Thermal Conductivity Optimization of Porous Alumina Ceramics via Taguchi Model

Article Preview

Abstract:

A comparative analysis of the thermal conductivity for porous alumina using Taguchi method has been reported in the current research. Porous alumina is one of the most critical ceramics amongst those that are widely used in the thermal insulator industry; this is because of their physical properties. Thus, the investigation of these properties is highly desirable. Test variables were performed for the thermal conductivity studies-weight per cent of a pore-forming agent (yeast), sintering temperature, and soaking time. Through implementing the experimental design using the Taguchi method for thermal conductivity of porous alumina was statistically analyzed. The Signal-to-noise ratio and variance analysis investigated the influence of different parameters on the porous media's thermal conductivity. The result of research determines that the addition of the pore-forming agent obtained a higher thermal insulator. Based on the optimum conditions obtained from the Taguchi method factor was 20wt.% weight of yeast cell , sintering temperature at 1200 C , and the holding time 1.5 h. that give higher value of the S/N ratio.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1002)

Pages:

125-131

Citation:

Online since:

July 2020

Export:

Price:

* - Corresponding Author

[1] Y. F .Liu , X. Q. Liu, H.Wei, & G. Y. Meng, Porous mullite ceramics from national clay produced by gel casting. Ceramics International, 27 (2004) 1-7.

DOI: 10.1016/s0272-8842(00)00034-1

Google Scholar

[2] D.S. Smith , S. Fayette , S. Grandjean , C. Martin ,R. Telle , and T.Tonnessen . Thermal Resistance of Grain Boundaries in Alumina Ceramics and Refractories. Journal of the American Ceramics Society, 86 (2003) 105-11.

DOI: 10.1111/j.1151-2916.2003.tb03285.x

Google Scholar

[3] M. A. A .Al‐dujaili, A.N. Saud , & M.A. Aswad. Synthesis of meso‐macro alumina using yeast cells as a bio‐template and optimization using a genetic algorithm. International Journal of Applied Ceramic Technology , 17 (2019) 1-17.

DOI: 10.1111/ijac.13359

Google Scholar

[4] H. S. Majdi, A.N. Saud, &S.N. Saud. Modeling the Physical Properties of Gamma Alumina Catalyst Carrier Based on an Artificial Neural Network. Materials, 12 (2019), 1752.

DOI: 10.3390/ma12111752

Google Scholar

[5] A.A. Al-dujaili, Mohammed , M.A. Aswad, & A.N. Saud .Preparation of Macro-Porous Alumina via Organic Additive and Characterizations Physical Properties by Using a Genetic Algorithm Method. In Proceedings of the 2017 IEEE 1st International Conference on Recent Trends of Engineering Science and Sustainability, Baghdad, Iraq. (2017)17-19.

Google Scholar

[6] A.N. Saud, H.S. Majdi, & S.N. Saud . Optimization of ceramic thermal insulation behavior using the genetic algorithm. In Annales de Chimie. Science des Materiaux, 42 (2018) 269. Lavoisier.

DOI: 10.3166/acsm.42.269-279

Google Scholar

[7] H.N. Yoshimura, A.L. Molisani, G.D. Siqueira, A.C. de Camargo, N.E. Narita, P.F. Cesar, & H.Goldenstein Effect of porosity on the mechanical properties of high purity alumina .Cerâmica, 51 (2005) 239-251.

DOI: 10.1590/s0366-69132005000300011

Google Scholar

[8] W.Yan, L. Yuanyuan ,L. Guangping ,H. Bingqiang , and X.Juliang . Effect of particle size on microstructure and strength of porous Spinel ceramics prepared by pore-forming in situ technique. Bulletin Materials Society, 34 (2011) 1109-1112.

DOI: 10.1007/s12034-011-0155-8

Google Scholar

[9] L.L. Sousa ,A.D. Souza,L. Fernandes,V. Arantes ,R. Salomão. Development of densification-resistant cast able porous structures from in situ mullite. Ceramics International,41 (2015) 9443-9454.

DOI: 10.1016/j.ceramint.2015.03.328

Google Scholar

[10] R.Salomão , J. Brandi . Macrostructures with hierarchical porosity produced from alumina–aluminum hydroxide–chitosan wet-spun fibers. Ceramics International, 39 (2013) 8227-8235.

DOI: 10.1016/j.ceramint.2013.04.007

Google Scholar

[11] A.R. Studart , U.T. Gonzenbach,E. Tervoort, L. Gauckler. Processing Routes to Macroporous Ceramics: A Review. Journal of the American Ceramic Society. 89 (2006) 1771-1789.

DOI: 10.1111/j.1551-2916.2006.01044.x

Google Scholar

[12] G.Taguchi . Introduction to Design of Experiments. In: Taguchi's Quality Engineering Handbook (2007).

Google Scholar

[13] P. Ross . Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter, and Tolerance Design (1988).

Google Scholar

[14] N. Radhika ,R. Subramanian ,S. Prasat ,Tribological Behaviour of Aluminium/Alumina/Graphite Hybrid Metal Matrix Composite Using Taguchi's Techniques. J Miner Mater Charact Eng. 10 (2011) 427. https://doi.org/10.4236/jmmce.2011.105032.

DOI: 10.4236/jmmce.2011.105032

Google Scholar

[15] B.M. Girish ,B. Satish ,S. Sarapure . Optimization of Wear Behavior of Magnesium Alloy AZ91 Hybrid Composites Using Taguchi Experimental Design. Metall Mater Trans A Phys Metall Mater Sci. 47 (2016) 3193-3200. https://doi.org/10.1007/s11661-016-3447-1.

DOI: 10.1007/s11661-016-3447-1

Google Scholar

[16] G.Taguchi ,A. Rafanelli , Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream. J Electron Package. (1994) 161-161. https://doi.org/10.1115/1.2905506.

DOI: 10.1115/1.2905506

Google Scholar

[17] J. Sudeepan , K.Kumar ,T. Barman ,P. Sahoo.Study of Friction and Wear of ABS/Zno Polymer Composite Using Taguchi Technique. Procedia Mater Sci. 6 (2014) 391-400. https://doi.org/10.1016/j.mspro.2014.07.050.

DOI: 10.1016/j.mspro.2014.07.050

Google Scholar

[18] S.Biswas ,A. Satapathy . Tribo-performance analysis of red mud filled glass-epoxy composites using Taguchi experimental design. Mater Des. 30 (2009) 2841-2853. https://doi.org/10.1016/j.matdes.2009.01.018.

DOI: 10.1016/j.matdes.2009.01.018

Google Scholar

[19] M.H. Cho ,S. Bahadur ,A.K. Pogosian ,.Friction and wear studies using the Taguchi method on polyphenylene sulfide filled with a complex mixture of MoS2, Al2O3, and other compounds.. Wear. 258 (2005) 1825-1835. https://doi.org/10.1016/j.wear.2004.12.017.

DOI: 10.1016/j.wear.2004.12.017

Google Scholar