Microstructure and Mechanical Properties Change with Cold Rolling of New Ti-13Nb-1.5Ta-3Mo Alloy

Article Preview

Abstract:

In this paper, a new metastable Titanium alloy in the Ti-Nb-Ta-Mo system has been successfully produced using both the d-electron and Moeq concept. The influence of cold rolling on the microstructure and hardness was investigated. The alloy was fabricated by arc melting, cold rolled up to 90% reduction in thickness and characterized using X-ray diffraction (XRD), optical microscope and Vickers microhardness. The XRD peaks depicted both β and α′′ phases in all the cold rolled specimens. The hardness of the alloy increased with increasing cold rolling reduction thickness. An excellent plasticity (≥ 65%) and compressive strength up to (2.9 GPa) was achieved with low Young’s modulus (31 GPa) and no failure or crack on the alloy. Also, the alloy demonstrated a high compressive true strength coefficient (k ≈1426 MPa) along with improved strain hardening index (n ≈ 0.41). Based on the XRD, optical microscope and microhardness indentation micrographs, the deformation mechanism of Ti-13Nb-1.5Ta-3Mo was found to be a combination of stress induced transformation, mechanical twinning and slipping.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-41

Citation:

Online since:

October 2021

Export:

Price:

* - Corresponding Author

[1] S. Antonov, Z. Kloenne, Y. Gao, D. Wang, Q. Feng, Y. Wang, H.L. Fraser, Y. Zheng, Materialia 9 (2020).

Google Scholar

[2] W. Xu, X. Wu, M. Calin, M. Stoica, J. Eckert, K. Xia, Scr. Mater. 60 (2009) 1012–1015.

Google Scholar

[3] M. Ahmed, D. Wexler, G. Casillas, O.M. Ivasishin, E. V. Pereloma, Acta Mater. 84 (2015) 124–135.

Google Scholar

[4] X.H. Min, K. Tsuzaki, S. Emura, K. Tsuchiya, Mater. Sci. Eng. A 528 (2011) 4569–4578.

Google Scholar

[5] X.H. Min, K. Tsuzaki, S. Emura, K. Tsuchiya, Mater. Sci. Eng. A 554 (2012) 53–60.

Google Scholar

[6] M. Morinaga, H. Yukawa, 20 (1997) 805–815.

Google Scholar

[7] D.M. Gordin, F. Sun, D. Laillé, F. Prima, T. Gloriant, Materialia 10 (2020) 100638.

DOI: 10.1016/j.mtla.2020.100638

Google Scholar

[8] M. Morinaga, 1.3 - The Molecular Orbital Approach and Its Application to Biomedical Titanium Alloy Design, Elsevier Inc., (2018).

Google Scholar

[9] S.S. Sidhu, H. Singh, M.A. Gepreel, Mater. Sci. Eng. C (2020) 111661.

Google Scholar

[10] R.P. Kolli, (2018) 1–41.

Google Scholar

[11] S. Sadeghpour, S.M. Abbasi, M. Morakabati, L.P. Karjalainen, D.A. Porter, Mater. Sci. Eng. A 731 (2018) 465–478.

Google Scholar

[12] K. Nyamuchiwa, M.A.H. Gepreel, A. Hamada, K. Nakamura, Key Eng. Mater. 780 KEM (2018) 15–19.

Google Scholar

[13] A.R.V. Nunes, S. Borborema, L.S. Araújo, J. Dille, L. Malet, L.H. de Almeida, J. Alloys Compd. 743 (2018) 141–145.

Google Scholar

[14] G. Choi, K. Lee, Mater. Charact. 123 (2017) 67–74.

Google Scholar

[15] S.F. Jawed, C.D. Rabadia, Y.J. Liu, L.Q. Wang, Y.H. Li, X.H. Zhang, L.C. Zhang, J. Alloys Compd. 792 (2019) 684–693.

Google Scholar

[16] S.F. Jawed, C.D. Rabadia, Y.J. Liu, L.Q. Wang, Y.H. Li, X.H. Zhang, L.C. Zhang, Mater. Des. 181 (2019) 0–10.

Google Scholar

[17] A.H. Awad, M.A. Gepreel, Mater. Today Proc. (2020).

Google Scholar