Composite Cerium Oxide Nanoparticles - Containing Polysaccharide Hydrogel as Effective Agent for Burn Wound Healing

Article Preview

Abstract:

A high risk of complications in burn injuries is associated with the development of systemic inflammatory response syndrome. Thermal injury (burn) causes the release of cytokines and prostaglandia, resulting in increased interaction between leukocytes, platelets and endothelial cells. Activation of leukocytes leads to an increase in the formation of reactive oxygen species (ROS) and nitrogen, which is normally compensated by the activation of protective antioxidant enzymes. An imbalance between the activity of the radical-producing and antioxidant systems leads to an excess of free radicals and the development of oxidative stress. Oxidative stress limits the repair of damaged tissue and also leads to localized chronic inflammation. Thus, the removal of inflammation and a decrease in the ROS level, which exceeds the physiological level in the burn zone, seems to be expedient for accelerating the healing process of burn injuries of the skin. In this study, we used a polysaccharide hydrogel modified with cerium dioxide (CeO2) nanoparticles, which have unique anti-inflammatory and antioxidant properties, as an effective agent for the treatment of thermal burns. It has been shown that modification of the hydrogel with CeO2 nanoparticles provides accelerated healing of a model burn wound in rats. Already on the 5th day after the treatment of damage to the skin with the modified hydrogel, a decrease in the area of ​​the burn wound that is different from the control is observed. The use of a hydrogel accelerates the healing process of a burn wound on the 25th day by 25.42% (p <0.05) and ensures complete healing of burn wounds on average 5 days earlier in comparison with the control group with Levomekol ointment. Treatment of burn wounds using a hydrogel leads to the formation of a small post-burn scar. Thus, a polysaccharide hydrogel modified with CeO2 nanoparticles can be considered as an effective wound healing agent in the treatment of thermal burns and skin lesions of various etiologies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

493-505

Citation:

Online since:

September 2021

Export:

Price:

* - Corresponding Author

[1] Xu, C., Qu, X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 6, (2014) e90.

DOI: 10.1038/am.2013.88

Google Scholar

[2] Heckert E., Karakoti A. S., Seal S., Self W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria Biomaterials 29(18) (2008) 2705-9.

DOI: 10.1016/j.biomaterials.2008.03.014

Google Scholar

[3] Alizadeh N., Salimi A., Sham T.-K., Bazylewski P., Fanchini G.  Intrinsic Enzyme-like Activities of Cerium Oxide Nanocomposite and Its Application for Extracellular H2O2 Detection Using an Electrochemical Microfluidic Device ACS Omega 5(21) (2020) 11883–11894.

DOI: 10.1021/acsomega.9b03252

Google Scholar

[4] Soren, S., Jena, S.R., Samanta, L. et al. Antioxidant Potential and Toxicity Study of the Cerium Oxide Nanoparticles Synthesized by Microwave-Mediated Synthesis. Appl Biochem Biotechnol 177(2015) 148–161.

DOI: 10.1007/s12010-015-1734-8

Google Scholar

[5] Baldim V., Bedioui F.,   Mignet N., Margaill I., Berret J.-F. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration Nanoscale 10 (2018) 6971-6980.

DOI: 10.1039/c8nr00325d

Google Scholar

[6] Alpaslan E., Yazici H., Golshan N. H., Ziemer K. S., Webster T. J. pH-Dependent Activity of Dextran-Coated Cerium Oxide Nanoparticles on Prohibiting Osteosarcoma Cell Proliferation ACS Biomater. Sci. Eng.  1(11) (2015) 1096–1103.

DOI: 10.1021/acsbiomaterials.5b00194

Google Scholar

[7] A. L. Popov, A. M. Ermakov, I. V. Savinstseva, I. I. Selezneva, R. A. Poltavtseva, E. I. Zaraisky, A. M. Poltavtsev, A. A. Stepanov, V. K. Ivanov, G. T. Sukhikh Citrate-stabilized nanoparticles of CeO2 stimulate proliferation of human mesenchymal stem cells in vitro Nanomechanics Science and Technology: An International Journal 7(3) (2016) 1–12.

DOI: 10.1615/nanomechanicsscitechnolintj.v7.i3.20

Google Scholar

[8] Popov A. L., Ermakov A. M., Savinstseva I. V., Selezneva I. I., Poltavtseva R. A., Zaraisky E. I., Poltavtsev A. M., Stepanov A. A., Ivanov V. K., Sukhikh G. T., Biosafety and effect of nanoparticles of CeO2 on metabolic and proliferative activity of human mesenchemal stem cells in vitro Nanomechanics Science and Technology: An International Journal 7(2) (2016) 165-175·.

DOI: 10.1615/nanomechanicsscitechnolintj.v7.i2.50

Google Scholar

[9] Popov A., Popova N., Selezneva I., Akkizov A., Ivanov V. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro J. Mater. Sci. Eng. C 68 (2016) 406–413.

DOI: 10.1016/j.msec.2016.05.103

Google Scholar

[10] Ciofani, G., Genchi, G.G., Liakos, I. et al. Effects of Cerium Oxide Nanoparticles on PC12 Neuronal-Like Cells: Proliferation, Differentiation, and Dopamine Secretion. Pharm Res 30 (2013) 2133–2145.

DOI: 10.1007/s11095-013-1071-y

Google Scholar

[11] Xiang H., Wang Y., Chang H., Yang S., Tu M., Zhang X., Yu B. Cerium-containing α-calcium sulfate hemihydrate bone substitute promotes osteogenesis J. Biomater Appl 34(2) (2019) 250-260.

DOI: 10.1177/0885328219849712

Google Scholar

[12] Augustine R., Dalvi Y. B., Dan P., George N., Helle D., Varghese R., Thomas S., Menu P., Sandhyaran N. Nanoceria Can Act as the Cues for Angiogenesis in Tissue-Engineering Scaffolds: Toward Next-Generation in Situ Tissue Engineering ACS Biomater. Sci. Eng. 4(12) (2018) 4338–4353.

DOI: 10.1021/acsbiomaterials.8b01102

Google Scholar

[13] Sadidi H., Hooshmand S., Ahmadabadi A., Hoseini J.S., Baino F., Vatanpour M., Kargozar S. Cerium Oxide Nanoparticles (Nanoceria): Hopes in Soft Tissue Engineering Molecules 25(19) (2020) 4559.

DOI: 10.3390/molecules25194559

Google Scholar

[14] Pop O. L., Mesaros A., Vodnar D.C., Suharoschi R., Tăbăran F., Magerus L., Tódor I. Sz., Diaconeasa Z., Balint A., Ciontea L., C. Socaciu Cerium Oxide Nanoparticles and Their Efficient Antibacterial Application In Vitro against Gram-Positive and Gram-Negative Pathogens Nanomaterials 10 (2020) 1614.

DOI: 10.3390/nano10081614

Google Scholar

[15] Thill A., Zeyons O., Spalla O., Chauvat F., Rose J., Auffan M., Flank A.M. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol. 40(19) (2006) 6151-6.

DOI: 10.1021/es060999b

Google Scholar

[16] Pelletier D.A., Suresh A.K., Holton G.A., McKeown C.K., Wang W, et al. Effects of Engineered Cerium Oxide NPs on Bacterial Growth and Viability. Applied Environ Microbiol 76(2010) 7981-7989.

DOI: 10.1128/aem.00650-10

Google Scholar

[17] Zeyons O., Thill A., Chauvat F., Menguy N., Cassier-Chauvat C., Oréar C., Daraspe J., Auffan M., Rose J., Spalla O. Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and Synechocystis Nanotoxicology 3(4) (2009) 284-295.

DOI: 10.3109/17435390903305260

Google Scholar

[18] Li X., Qi M., Sun X., Weir M. D., Tay F. R., Oates T. W., et al. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities. Acta Biomater. 94 (2019) 627–643.

DOI: 10.1016/j.actbio.2019.06.023

Google Scholar

[19] Arumugam A., Karthikeyan C., Hameed A. S. H., Gopinath K., Gowri S., Karthika V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties Mater Sci Eng C 49 (2015) 408-415.

DOI: 10.1016/j.msec.2015.01.042

Google Scholar

[20] Qi M., Li W., Zheng X., Li X., Sun Y., Wang Y., Li C., Wang L. Cerium and Its Oxidant-Based Nanomaterials for Antibacterial Applications: A State-of-the-Art Review Front. Mater., 7(2020) 213.

DOI: 10.3389/fmats.2020.00213

Google Scholar

[21] Kitamura Y., Sumaoka J., Komiyama M.Hydrolysis of DNA by cerium(IV)/EDTA complex Tetrahedron 59(52) (2003)10403-10408.

DOI: 10.1016/j.tet.2003.06.005

Google Scholar

[22] Chen, CH., Lin, YC., Mao, CF. et al. Green synthesis, size control, and antibacterial activity of silver nanoparticles on chitosan films. Res Chem Intermed 45 (2019) 4463–4472.

DOI: 10.1007/s11164-019-03842-z

Google Scholar

[23] Robson M.C. Wound infection: a failure of wound healing caused by an imbalance of bacteria. Surgical Clinics of North America 77(3) (1997) 637-650.

DOI: 10.1016/s0039-6109(05)70572-7

Google Scholar

[24] Ermakov A.M., Popov A.L., et al. The first inorganic mitogens: Cerium oxide and cerium fluoride nanoparticles stimulate planarian regeneration via neoblastic activation. Mater. Sci. Eng. C, 104(2019)109924.

DOI: 10.1016/j.msec.2019.109924

Google Scholar