Effect of Fiber Laser Surface Modification on the Corrosion Behavior of 316L Stainless Steel

Article Preview

Abstract:

This paper investigates the effect of fiber laser surface modification of AISI 316L austenitic stainless steel on corrosion behavior. In the experiments, the fiber laser with center wavelength of 1062 nm was employed with various laser parameters of beam velocity and laser frequency. The laser-treated has performed on the specimen surface in order to form the melted layer with an argon gas shielding. The electrochemical tested results showed that the laser-treated increases 40% pitting potential. Moreover, the results also exhibited corrosion potential shift to more positive potential. On the basis of the findings on the corrosion improvement, it can be concluded that the pitting potential of the material can be improved by a corrosion protective layer from the new laser-treated surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-142

Citation:

Online since:

August 2020

Export:

Price:

* - Corresponding Author

[1] C. Garcia, M. P. De Tiedra, Y. Blanco, O. Martin, F. Martin, Intergranular corrosion of welded joints of austenitic stainless steels studied by using an electrochemical minicell, Corros. Sci. 50(8) (2008) 2390-2397.

DOI: 10.1016/j.corsci.2008.06.016

Google Scholar

[2] D. Siriporn, K. Noparat, C. Somsiri, Atmospheric Corrosion of Stainless Steels in Thailand, King Mongkut's University of Technology North Bangkok International Journal of Applied Science and Technology 5, 1 (2012) 63-69.

Google Scholar

[3] Y. C Lu, M. B. Ives. Chemical treatment with cerium to improve the crevice corrosion resistance of austenitic stainless steels. Corros. Sci. 37(1) (1995) 145-155.

DOI: 10.1016/0010-938x(94)00126-q

Google Scholar

[4] N. Le Bozec, C. Compere, M. L'Her, A. Laouenan, D. Costa, P. Marcus, Influence of stainless steel surface treatment on the oxygen reduction reaction in seawater, Corros. Sci. 43(4) (2001) 765-786.

DOI: 10.1016/s0010-938x(00)00113-x

Google Scholar

[5] C. Garcia, S. Cere, D. Alicia, Bioactive coatings prepared by sol–gel on stainless steel 316L, J. Non-Cryst. 348 (2004) 218-224.

DOI: 10.1016/j.jnoncrysol.2004.08.172

Google Scholar

[6] S. Kalainathan, S. Sathyajith, S. Swaroop, Effect of laser shot peening without coating on the surface properties and corrosion behavior of 316L steel, Opt. Laser. Eng. 50(12) (2012) 1740-1745.

DOI: 10.1016/j.optlaseng.2012.07.007

Google Scholar

[7] C. Carboni, P. Peyre, G. Beranger, C. Lemaitre, Influence of high power diode laser surface melting on the pitting corrosion resistance of type 316L stainless steel, J. Mater. Sci. 37(17) (2002) 3715-3723.

DOI: 10.2351/1.5059895

Google Scholar

[8] J. Z. Lu, K. Y. Luo, Y. K. Zhang, G. F. Sun, Y. Y. Gu, J. Z. Zhou, X. D. Ren et al, Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel, Acta Materialia 58, 16 (2010) 5354-5362.

DOI: 10.1016/j.actamat.2010.06.010

Google Scholar

[9] T. M. Yue, J. K. Yu, H. C. Man, The effect of excimer laser surface treatment on pitting corrosion resistance of 316LS stainless steel, Surf. Coat. Tech. 137(1) (2001) 65-71.

DOI: 10.1016/s0257-8972(00)01104-x

Google Scholar

[10] P. Peyre, X. Scherpereel, L. Berthe, C. Carboni, R. Fabbro, G. Béranger, C. Lemaitre, Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance, Mater. Sci. Eng: A 280 (2) (2000) 294-302.

DOI: 10.1016/s0921-5093(99)00698-x

Google Scholar

[11] W. Pacquentin, N. Caron, R. Oltra., Effect of microstructure and chemical composition on localized corrosion resistance of a AISI 304L stainless steel after nanopulsed-laser surface melting, Appl. Surf. Sci. 356 (2015) 561-573.

DOI: 10.1016/j.apsusc.2015.08.015

Google Scholar

[12] W. Pacquentin, N. Caron, R. Oltra., Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance, Appl. Surf. Sci. 288 (2014) 34-39.

DOI: 10.1016/j.apsusc.2013.09.086

Google Scholar

[13] E. H. Amara, F. Haïd, A. Noukaz, Experimental investigations on fiber laser color marking of steels, Appl. Surf. Sci. 351 (2015) 1-12.

DOI: 10.1016/j.apsusc.2015.05.095

Google Scholar

[14] L. Y. Qin, X. D. Wang, F. L. Song, Y. Jao, S. H. Luo, Effect of Residual Stress and Microstructures on 316 Stainless Steel Treated by LSP, In Materials Science Forum. 898 (2017) 1261-1265.

DOI: 10.4028/www.scientific.net/msf.898.1261

Google Scholar

[15] J. A. Denny, Principles and Prevention of Corrosion, 2nd ed., Prentice Hall., (1995).

Google Scholar

[16] K. Asami, K. Hashimoto, Importance of initial surface film in the degradation of stainless steels by atmospheric exposure, Corros. Sci. 45(10) (2003) 2263-2283.

DOI: 10.1016/s0010-938x(03)00047-7

Google Scholar

[17] T. Hong, T. Ogushi, M. Nagumo, The effect of chromium enrichment in the film formed by surface treatments on the corrosion resistance of type 430 stainless steel, Corros. Sci. 38(6) (1996) 881-888.

DOI: 10.1016/0010-938x(96)00174-6

Google Scholar

[18] P. Lacombe, B. Baroux, G. Beranger, Stainless Steels, Les Editions de Physique Les Ulis, France, (1993).

Google Scholar

[19] C. T Kwok, F. T. Cheng, H. C. Man, W. H. Ding, Corrosion characteristics of nanostructured layer on 316L stainless steel fabricated by cavitation-annealing, Mater. 60(19) (2006) 2419-2422.

DOI: 10.1016/j.matlet.2006.01.053

Google Scholar

[20] S. Esmailzadeh, M. Aliofkhazraei, H. Sarlak, Interpretation of Cyclic Potentiodynamic Polarization Test Results for Study of Corrosion Behavior of Metals: A Review, Prot. Met. Phys. Chem. 54(5) (2018) 976-989.

DOI: 10.1134/s207020511805026x

Google Scholar

[21] K. R. Trethewey, J. Chamberlain, Corrosion for Science and Engineering, Longman, Harlow, (1995).

Google Scholar

[22] N. Cotolan, A. Pop, D. Marconi, O. Ponta, L. M. Muresan, Corrosion behavior of TiO2‐coated Ti–6Al–7Nb surfaces obtained by anodic oxidation in sulfuric or acetic acid, Mater. Corros. 66(7) (2015) 635-642.

DOI: 10.1002/maco.201407687

Google Scholar