Development of Bioactive Apatite Nuclei-Precipitated Ti-12Ta-9Nb-6Zr-3V-O Alloy

Article Preview

Abstract:

Ti-12Ta-9Nb-6Zr-3V-O alloy, one of the shape-memory alloys with lower Young’s modulus in comparison with conventional titanium alloy, was treated with sulfuric acid to form roughened surface on the substrate. In order to impart hydroxyapatite formation ability to the Ti-12Ta-9Nb-6Zr-3V-O alloy, apatite nuclei (AN) were precipitated on the roughened surface using simulated body fluid (SBF) adjusted at higher pH than physiological condition. By this treatment, AN-precipitated Ti-12Ta-9Nb-6Zr-3V-O alloy was obtained. The AN-precipitated Ti-12Ta-9Nb-6Zr-3V-O alloy showed high hydroxyapatite formation ability in physiological SBF.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-130

Citation:

Online since:

December 2019

Export:

Price:

* - Corresponding Author

[1] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W., J. Biomed. Mater. Res. 24 (1990) 721-734.

DOI: 10.1002/jbm.820240607

Google Scholar

[2] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone hydroxyapatite formation ability?, Biomaterials 27 (2006) 2907-2915.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[3] ISO 23317: 2007, Implants for surgery — In vitro evaluation for hydroxyapatite formation ability of implant materials.

Google Scholar

[4] H. Takadama, T. Kokubo, In vitro evaluation of bone hydroxyapatite formation ability, in: T. Kokubo (Ed.), Bioceramics and their clinical applications, Woodhead Publishing, Cambridge, 2008, pp.165-182.

DOI: 10.1533/9781845694227.1.165

Google Scholar

[5] T. Yao, M. Hibino, S. Yamaguchi and H. Okada, U.S. Patent 8,178,066 (2012), Japanese Patent 5,261,712 (2013).

Google Scholar

[6] T. Yao, M. Hibino and T. Yabutsuka, U.S. Patent 8,512,732. (2013), Japanese Patent 5,252,399. (2013).

Google Scholar

[7] T. Yabutsuka, M. Hibino, T. Yao, K. Tanaka, M. Takemoto, M. Neo, T. Nakamura, Fabrication of bioactive apatite nuclei precipitated titanium by using electromagnetic induction heating, Bioceram. Devel. Appl. 1 (2011) D110122.

DOI: 10.4303/bda/d110122

Google Scholar

[8] Y. Kidokoro, T. Yabutsuka, S. Takai, T. Yao, Bioactivity treatments for zirconium and Ti-6Al-4V alloy by the function of apatite nuclei, Bioceramics 28 (2017) 175-179.

DOI: 10.4028/www.scientific.net/kem.720.175

Google Scholar

[9] T. Yabutsuka, Y. Kidokoro, S. Takai, T. Yao, Development of Bioactive Ti-15Mo-5Zr-3Al Alloy by Incorporation of Apatite Nuclei, Bioceramics 29 (2017) 75-80.

DOI: 10.4028/www.scientific.net/kem.758.75

Google Scholar

[10] T. Yabutsuka, R. Karashima, S. Takai, T. Yao, Effect of doubled sandblasting process and basic simulated body fluid treatment on fabrication of bioactive stainless steels, Materials 11 (2018) 1334.

DOI: 10.3390/ma11081334

Google Scholar

[11] T. Yabutsuka, H. Mizutani, S. Takai, T. Yao, Fabrication of bioactive Co-Cr-Mo-W alloy by using doubled sandblasting process and apatite nuclei treatment, Trans. Mat. Res. Soc. Japan 43 (2017) 143-147.

DOI: 10.14723/tmrsj.43.143

Google Scholar