Novel Approach in B-Staging of an Epoxy Resin for Development of rCF Non-Woven Prepregs for RTP Processing

Article Preview

Abstract:

A novel B-stage resin system is developed for the „Resin Transfer Pressing“ (RTP) process. This composite manufacturing technique makes use of nonwoven and recycled carbon fibres (rCF) that are oversaturated with a thermosetting resin. The new resin system is based on two different hardeners, allowing to easily impregnate the rCF, storing the semi-finished parts at room temperature and finally curing them via compression molding. It is shown that a commercially available resin system can be tailored to the required needs by the smart combination of state-of-the art, latent hardener systems.The present study focusses on the route for B-staging of the resin system. The viscosity for impregnation and oversaturation was adjusted to be in the range of 5 to 40 Pa·s at 60°C. The viscosity increases to above 50 Pa·s at room temperature, allowing storage and handling of the semi-finished parts and processing them whenever it is required. Choosing a proper processing temperature is important during the B-staging process to avoid any unintended activation of the second hardener, which is responsible for the final curing stage of the system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

521-526

Citation:

Online since:

June 2019

Export:

Price:

* - Corresponding Author

[1] M. Sauer, M. Kühnel, and E. Witten, Composites-Marktbericht 2017: Marktentwicklungen, Trends, Ausblicke und Herausforderungen,, AVK – Industrievereinigung Verstärkte Kunststoffe e. V.; Carbon Composites e.V., (2017).

DOI: 10.1007/978-3-658-02755-1

Google Scholar

[2] G. Oliveux, L. O. Dandy, and G. A. Leeke, Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties,, Progress in Materials Science, vol. 72, p.61–99, (2015).

DOI: 10.1016/j.pmatsci.2015.01.004

Google Scholar

[3] A. Hohmann et al., MAI Enviro: Vorstudie zur Lebenszyklusanalyse mit ökobilanzieller Bewertung relevanter Fertigungsprozessketten für CFK-Strukturen,, Fraunhofer-Institut für Chemische Technologie; Fraunhofer IRB-Verlag, Stuttgart, (2015).

Google Scholar

[4] M. Neitzel, P. Mitschang, and U. Breuer, Eds., Handbuch Verbundwerkstoffe. München: Carl Hanser Verlag GmbH & Co. KG, (2014).

Google Scholar

[5] U. P. Breuer, Commercial Aircraft Composite Technology. Switzerland: Springer, (2016).

Google Scholar

[6] Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on end-of-life vehicles, (2000).

DOI: 10.1017/cbo9780511610851.046

Google Scholar

[7] E. Asmatulu, J. Twomey, and M. Overcash, Recycling of fiber-reinforced composites and direct structural composite recycling concept,, Journal of Composite Materials, vol. 48, no. 5, p.593–608, (2013).

DOI: 10.1177/0021998313476325

Google Scholar

[8] S. Schlichter, Web Based Composites: Potenziale vliesbasierter Verbundbauteile,, Augsburg, Jan. 31 (2017).

Google Scholar

[9] B. Gulich and M. Hofmann, Aufbereiten - Separieren - Mischen - Flächenbilden Alternative Verfahren für Leichtbauvliesstoffe,, Hof, Nov. 4 (2015).

Google Scholar

[10] M. Hofmann, D. Wenzel, B. Gulich, H. Illing-Günther, and D. Nestler, Development of Nonwoven Preforms Made of Pure Recycled Carbon Fibres (rCF) for Applications of Composite Materials,, KEM, vol. 742, p.555–561, (2017).

DOI: 10.4028/www.scientific.net/kem.742.555

Google Scholar

[11] V. Jehle, E. Förster, and H. Pill, Möglichkeiten der Verarbeitung von Recyclingmaterial mittels nichtkonventioneller Vliesstofftechnologien,, Stuttgart, Mar. 9 (2017).

Google Scholar

[12] SGL Group, RECATEX oriented nonwoven.

Google Scholar

[13] E. Royster, Carbiso-M-TDS: Technical Data Sheet.

Google Scholar

[14] Polynt Composites, Compounds Carbon Fiber Products: Company Product Brochure,,.

Google Scholar