Stress Distribution and Deformation Behavior of Alumina Ceramic after Mini Bullet Dynamic Impact

Article Preview

Abstract:

Alumina ceramics sintered at 1350, 1450 and 1550 °C with different grain sizes were tested under dynamic load using a small-scale compressed air gun with sharpened tungsten carbide bullets impacting at a sub-ballistic velocity of 360 km/h. The deformation behavior and sub-surface cracks were recorded by visual examination. Cr3+ fluorescence was used to measure the residual stress distribution on and beneath the impact site. The results show the alumina sintered at 1350 °C with a fine grain size of 1.7 μm and high hardness of 18.3 GPa is good at bulletproof due to the cone cracks can spread the dynamic stress effectively and consume much impact energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

140-145

Citation:

Online since:

April 2018

Export:

Price:

* - Corresponding Author

[1] G. R. Willmott, D.D. Radford, Taylor impact of glass rods, J. Appl. Phys., 97 (2005) 289-178.

Google Scholar

[2] V. Madhu, K. Ramanjaneyulu, T.B. Bhat, et al, An Experimental Study of Penetration Resistance of Ceramic Amour Subjected to Projectile Impact, Int. J. Impact Eng., 32(2005) 337-350.

DOI: 10.1016/j.ijimpeng.2005.03.004

Google Scholar

[3] R. Chi, A. Serjouei, I. Sridhar, et al, Pre-stress effect on confined ceramic armor ballistic performance, Int. J. Impact Eng., 84(2015) 159-170.

DOI: 10.1016/j.ijimpeng.2015.05.011

Google Scholar

[4] L.H.L. Louro, A.L.V. Cardoso, Split Hopkinson bar testing to study failure waves in brittle materials, J. Phys. IV, 134(2006) 547-552.

DOI: 10.1051/jp4:2006134084

Google Scholar

[5] S.M. Walley, Historical review of high strain rate and shock properties of ceramics relevant to their application in armour, Adv. Appl. Ceram., 109(2010) 446-466.

DOI: 10.1179/174367609x422180

Google Scholar

[6] S.N. Monteiro, L.H.L. Louro, A.V. Gomes, et al., How effective is a convex Al2O3-Nb2O5, ceramic armor?, Ceram. Int., 42(2016) 7844-7847.

DOI: 10.1016/j.ceramint.2015.12.147

Google Scholar

[7] J. Lankford, Mechanisms Responsible for Strain-Rate-Dependent Compressive Strength in Ceramic Materials, J. Am. Ceram. Soc., 64(2010) 33-34.

DOI: 10.1111/j.1151-2916.1981.tb09570.x

Google Scholar

[8] K. Byung-Nam, New ceramic ready to take the strain; Kim Byung-Nam details the development of a high-strain-rate superplastic ceramic that has practical application in shape forming processes, Chem. Commun., 48(2012) 2906-2908.

Google Scholar

[9] L.C. Tang, Z.F. Liu, J.Z. Chang, et al., Dynamic behaviors of alumina ceramic under high pressure and high strain-rate, J. Fun. Mat., (2008).

Google Scholar

[10] C.E.A. Jr, B. L. Morris, The ballistic performance of confined Al2O3, ceramic tiles, International Int. J. Impact. Eng., 12(1992) 167-187.

DOI: 10.1016/0734-743x(92)90395-a

Google Scholar

[11] N. Xu, W.W. Chen, S. Xin, et al, Dynamic Failure of Borosilicate Glass Under Compression/Shear Loading Experiments, J. Am. Ceram. Soc., 90(2007) 2556–2562.

DOI: 10.1111/j.1551-2916.2007.01819.x

Google Scholar

[12] H. Luo, W. Chen, Dynamic Compressive Response of Intact and Damaged AD995 Alumina, INT J. Appl. Ceram. Tec., 1(2004) 254-260.

DOI: 10.1111/j.1744-7402.2004.tb00177.x

Google Scholar

[13] S. Guo, R. I. Todd, Confocal fluorescence microscopy in alumina-based ceramics: Where does the signal come from?, J. Eur. Ceram. Soc., 30(2010) 641-648.

DOI: 10.1016/j.jeurceramsoc.2009.08.020

Google Scholar

[14] G. Gouadec, P. Colomban, N. Piquet, et al, Raman/Cr3+ Fluorescence Mapping of Melt-Grown Al2O3/GdAlO3 Eutectics, J. Eur. Ceram. Soc., 25(2007) 1147-1453.

DOI: 10.1016/j.jeurceramsoc.2005.01.024

Google Scholar

[15] K. A. Iyer, Relationships between multiaxial stress states and internal fracture patterns in sphere-impacted silicon carbide, Int. J. Fracture., 146(2007) 1-18.

DOI: 10.1007/s10704-007-9108-z

Google Scholar