A Study of Promoters Effect on Fe on Reduced Graphene Oxide Catalyst Performance in Fischer-Tropsch Synthesis System

Article Preview

Abstract:

In this work the Fischer-Tropsch synthesis reaction was catalyzed by reduced graphene oxide supported Fe nanoparticles catalysts in a fixed bed reactor. Also the influence of promotion by K and Mn on the catalytic activity of Fe nanoparticles was investigated. The systems showed acceptable CO conversions reaching as high as 96.2%. The selectivities of the C1-5 ranged from 38 to 62%. There was a very high CO2 selectivity which was explained by incomplete reduction of the catalysts. The Anderson-Schultz-Flory parameter was calculated and varied between 0.25 and 0.3. The strongest promoting effect was achieved by the K promoter which tended to reduce light product selectivities and CO2 production the most.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-147

Citation:

Online since:

May 2017

Export:

Price:

* - Corresponding Author

[1] B.H. Davis and M.L., in: Fischer-Tropsch Synthesis, Catalysts and Catalysis , edited by B.H. Davis and M.L. Occelli, volume 163 of Studies in Surface Science and Catalysis, chapter 1. CRC Press (2007).

DOI: 10.1201/9781420062571

Google Scholar

[2] M.A. Haider, M.R. Gogate, and R.J. Davis: J. Catal. Vol. 261 (2009), p.9.

Google Scholar

[3] H.M. Galvis, A.C. Koeken, J.H. Bitter, T. Davidian, M. Ruitenbeek, A.I. Dugulan, and K.P. De Jong: J. Catal. Vol. 303 (2013), p.22.

Google Scholar

[4] V.A. de la Peña O'Shea, M.C. Álvarez-Galván, J.M. Campos-Martín, and J.G. Fierro: Appl. Catal. A Gen. Vol. 326 (2007), p.65.

Google Scholar

[5] V.A. de la Peña O'Shea, M.C. Álvarez-Galván, J.M. Campos-Martin, N.N. Menéndez, J.D. Tornero, and J.G. Fierro: Eur. J. Inorg. Chem. Vol. 2006 (2006), p.5057.

DOI: 10.1002/ejic.200600778

Google Scholar

[6] V.A. de la Pena O'Shea, J.M. Campos-Martín, and J.G. Fierro: Catal. Commun. Vol. 5 (2004), p.635.

Google Scholar

[7] V.A. De La Peña O'Shea, M. C. Alvarez-Galvan, J. M. Campos-Martin, and J.G. Fierro: Catal. Letters Vol. 100 (2005), p.105.

Google Scholar

[8] J. Bao, G. Yang, C. Okada, Y. Yoneyama, and N. Tsubaki: Appl. Catal. A Gen Vol. 394 (2011), p.195.

Google Scholar

[9] W. Ma, Y. Ding, J. Yang, X. Liu, and L. Lin: React. Kinet. Catal. Lett. Vol. 84 (2005), p.11.

Google Scholar

[10] W. Ma, E.L. Kugler, J. Wright, and D.B. Dadyburjor: Energy and Fuels Vol. 20 (2006), p.2299.

Google Scholar

[11] S.O. Moussa, L.S. Panchakarla, M.Q. Ho, and M.S. El-Shall: ACS Catal. Vol. 4 (2014), p.535.

Google Scholar

[12] E.N. Ghoniem and A.A. El-Moniem: J. Power Sources Vol. 705 (2016), p.138.

Google Scholar

[13] A. Hessein, F. Wang, H. Masai, K. Matsuda, and A.A. El-Moneim: Jpn. J. Appl. Phys. Vol. 55 (2016).

Google Scholar

[14] R. Luque, A.R. de la Osa, J.M. Campelo, A.A. Romero, J.L. Valverde, and P. Sanchez: Energy Environ. Sci. Vol. 5 (2012), p.5186.

Google Scholar

[15] A.Y. Krylova, A.A. Panin, A.S. Lyadov, S.A. Sagitov, V.I. Kurkin, and Y.G. Kryazhev: Pet. Chem. Vol. 51 (2011), p.317.

DOI: 10.1134/s0965544111050094

Google Scholar

[16] M. Luo and B.H. Davis: Appl. Catal. A Gen. Vol. 246 (2003), p.171.

Google Scholar

[17] W.S. Hummers and R.E. Offeman: J. Am. Chem. Soc. Vol. 80 (1958), p.1339.

Google Scholar

[18] H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen: ACS Nano Vol. 2 (2008), p.463.

Google Scholar

[19] H.M. Hassan, V. Abdelsayed, A.S. Khder, K.M. AbouZeid, J. Terner, M.S. El-Shall, S.I. Al-Resayes, and A.A. El-Azhary: J. Mater. Chem. Vol. 19 (2009), p.3832.

DOI: 10.1039/b906253j

Google Scholar

[20] C.H. Bartholomew: Catal. Letters Vol. 7 (1990), p.303.

Google Scholar

[21] Y. Gao, D. Ma, C. Wang, J. Guan, and X. Bao: Chem. Commun. Vol. 4 (2011), p.2432.

Google Scholar