Dielectric Properties of Pineapple Leaf Fiber Reinforced Epoxy Based Composites

Article Preview

Abstract:

The present study investigates the dielectric constant, loss factor and dissipation factor of pineapple leaf fiber reinforced epoxy composites as in function of fiber loading, fiber surface modification and frequency. The dielectric properties of the composites were measured using HP 16451 as the dielectric test fixture and was carried out on pineapple leaf fiber reinforced epoxy composites with varying fiber loading (5wt%, 10wt%, 15wt%, and 20wt%) and fiber subjected to sodium hydroxide treatment. It was observed that the dielectric properties of these composites were influenced by fiber loading and sodium hydroxide treatment. The dielectric constant increases with increase of fiber concentration and decrease with the increase of frequency in the case of all composites. It was also observed that the increase of dielectric constant with fiber loading was more significant at low frequency. Due to a reduction in the hydrophilic nature of pineapple leaf fiber brought about by sodium hydroxide treatment the dielectric properties of the composites was less than that of the untreated ones.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

42-47

Citation:

Online since:

February 2017

Export:

Price:

* - Corresponding Author

[1] U. Hujuri, S. K. Chattopadhay, R. Uppaluri, A. K. Ghoshal. Effect of maleic anhydride grafted polypropylene on the mechanical and morphological properties of chemically modified short-pineapple-leaf-fiber-reinforced polypropylene composites. J. Appl. Polym. Sci. 107 (2008).

DOI: 10.1002/app.27156

Google Scholar

[2] L. U. Devi, S. S. Bhagawan, and S. Thomas. Mechanical properties of pineapple leaf fiber reinforced polyester composites. J. Appl. Polym. Sci. 64 (1997) 1739-1748.

DOI: 10.1002/(sici)1097-4628(19970531)64:9<1739::aid-app10>3.0.co;2-t

Google Scholar

[3] B. M. Cherian, A. L. Leão, S. F. de Souza, S. Thomas, L. A. Pothan, M. Kottaisamy. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carboh. Polym. 81 (2010) 720-725.

DOI: 10.1016/j.carbpol.2010.03.046

Google Scholar

[4] A. R. S. Neto, M. A. M. Araujo, F. V. D. Souza, L. H. C. Mattaso, J. M. Marconcini. Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Indust. Crops and Prod. 43 (2013).

DOI: 10.1016/j.indcrop.2012.08.001

Google Scholar

[5] N. Kengkhetkit, T. Amornsakchai. Utilisation of pineapple leaf waste for plastic reinforcement: 1. A novel extraction method for short pineapple leaf fiber. Indust. Crops and Prod. 40 (2012) 55-61.

DOI: 10.1016/j.indcrop.2012.02.037

Google Scholar

[6] R. Chollakup, R. Tantatherdtam, S. Ujjin, K. Sriroth. Pineapple leaf fiber reinforced thermoplastic composites: Effects of fiber length and fiber content on their characteristics. J. Appl. Polym. Sci. 119 (2011) 1952-(1960).

DOI: 10.1002/app.32910

Google Scholar

[7] L. Uma Devi, K. Joseph, K. C. Manikandan Nair, S. Thomas. Ageing studies of pineapple leaf fiber-reinforced polyester composites. J. Appl. Polym. Sci. 94 (2004) 503-510.

DOI: 10.1002/app.20924

Google Scholar

[8] P. Threepopnatkul, N. Kaerkitcha, N. Athipongarporn. Effect of surface treatment on performance of pineapple leaf fiber-polycarbonate composites. Compost. Part B: Eng. 40 (2009) 628-632.

DOI: 10.1016/j.compositesb.2009.04.008

Google Scholar

[9] L. Uma Devi, S. Bhagawan, S. Thomas. Dynamic mechanical properties of pineapple leaf fiber polyester composites. Polym. Composit. 32 (2011) 1741-1750.

DOI: 10.1002/pc.21197

Google Scholar

[10] J. George, K. Joseph, S. S. Bhagawan, S. Thomas. Influence of short pineapple fiber on the viscoelastic properties of low-density polyethylene. Mater. Lett. 18 (1993) 163-170.

DOI: 10.1016/0167-577x(93)90119-i

Google Scholar

[11] A. Patra, D. K. Bisoyi. Dielectric and impedance spectroscopy studies on sisal fibre-reinforced polyester composite. J. of Mater. Sci. 45 (2010) 5742-5748.

DOI: 10.1007/s10853-010-4644-8

Google Scholar

[12] A. N. Fraga, E. Frullloni, O. de la Osa, J. M. Kenny, A. Vázquez. Relationship between water absorption and dielectric behaviour of natural fibre composite materials. Polym. Test. 25 (2006) 181-187.

DOI: 10.1016/j.polymertesting.2005.11.002

Google Scholar

[13] S. Mishra, A. K. Mohanty, L. T. Drzal, M. Misra, G. Hinrichsen. A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromolec. Mater. Eng. 289 (2004) 955-974.

DOI: 10.1002/mame.200400132

Google Scholar

[14] R. M. N Arib, S. M. Sapuan, M. M. H. M Ahmad, M. T. Paridah, H. M. D. Khairul Zaman Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater. Des. 27 (2006) 391-396.

DOI: 10.1016/j.matdes.2004.11.009

Google Scholar

[15] J. Izdebska, S. Thomas, Printing on Polymers: Fundamentals and Applications. 2015: William Andrew.

Google Scholar

[16] Y. Li, M. Cordovez, V. Karbhari. Dielectric and mechanical characterization of processing and moisture upatake effects in E-glass/epoxy composites. Compost. Part B: Eng. 34 (2003) 383-390.

DOI: 10.1016/s1359-8368(02)00133-6

Google Scholar

[17] A. Paul, K. Joseph, S. Thomas. Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Compost. Sci. and Tech. 57 (1997) 67-79.

DOI: 10.1016/s0266-3538(96)00109-1

Google Scholar