Dynamic Model of the Test Station for Gear Drives Dynamic Tests

Article Preview

Abstract:

The contribution deals with the issue of the experimental assessment of the dynamic behaviour of the gear drives. The objective is to design and to realize the experimental station for dynamic tests of gear drives in an accelerated mode. Described is the idea of the experimental station design, the procedure of creating its mathematical model and the model for computer simulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

434-442

Citation:

Online since:

October 2015

Export:

Price:

* - Corresponding Author

[1] A. Šmeringaiová, Contribution to the analysis and optimization of the impact of technological parameters on the dynamic load of worm gearing, PhD Thesis, FMT, Prešov, (2008).

Google Scholar

[2] J. Maščeník, S. Pavlenko, Determining the exact value of the shape deviations of the experimental measurements, Applied Mechanics and Materials 624 (2014) 339-343.

DOI: 10.4028/www.scientific.net/amm.624.339

Google Scholar

[3] J. Maščenik, S. Pavlenko, Ľ. Bičejová, Component Selected Parametres Geometrical Tolerance Value Experimental Specification, Applied Mechanics and Materials 389 (2013) 1096-1099.

DOI: 10.4028/www.scientific.net/amm.389.1096

Google Scholar

[4] J. Litecká, S. Pavlenko, Mathematical modelling of gear hob surface with basic. In: Acta Technica Corviniensis: Buletin of Engineering 5/3 (2012) 57-59.

Google Scholar

[5] I. Vojtko, M. Kočiško, Deterministic Chaos and Mechanical Systems, Journal CA Systems in Production Planning 14/1 (2013) 42-44.

Google Scholar

[6] E. Vitikáč Batešková, A. Panda, Stroke design for the press roller on the curling Twincylinder machine, Applied Mechanics and Materials 616 (2014) 351-358.

DOI: 10.4028/www.scientific.net/amm.616.351

Google Scholar

[7] Bičejová, Ľ., Abrasive kind and granularity changes affects to water jet technology head vibration during cutting HARDOX material thickness alternation process, Applied Mechanics and Materials 308 (2013) 75-79.

DOI: 10.4028/www.scientific.net/amm.308.75

Google Scholar

[8] J. Murčinko, Z. Murčinková, Implementation of intelligent elements in vibration diagnostics of CNC machines, Applied Mechanics and Materials 308 (2013) 87-93.

DOI: 10.4028/www.scientific.net/amm.308.87

Google Scholar

[9] T. Krenický, Implementation of Virtual Instrumentation for Machinery Monitoring, in: Scientific Papers: Operation and Diagnostics of Machines and Production Systems Operational States: Vol. 4, RAM-Verlag, Lüdenscheid, 2011, pp.5-8.

Google Scholar

[10] T. Krenický, P. Jacko, Real-time monitoring of technical systems operation (Real-time monitoring prevádzky technických systémov), Strojárstvo Extra 5 (2011) 32/1-32/2. (in Slovak).

Google Scholar

[11] K. Monková, V. Fečová, Z. Hutyrová, Computer aid of mechanism behavior, Applied Mechanics and Materials 440 (2013) 182-187.

DOI: 10.4028/www.scientific.net/amm.440.182

Google Scholar

[12] E. Vitikáč Batešková, Flexibility and strength 1: Solved examples, 1st ed., FMT TUKE, Prešov, (2013).

Google Scholar