Physic-Chemical Characterization of a Waste from Olive Industry

Article Preview

Abstract:

In this work, a waste form olive industry was characterized in terms of its physical–chemical properties, which can be useful for its use in biosorption processes or in pyrolysis units. The characterization results showed that the solid presents a good size distribution to be use as biosorbent or as fuel, although it can be improve with a milled step. The initial moisture content is very high (around 40%), being one of the main characteristics of the solid that makes its direct use as a fuel difficult. However, the low sulfur value (< 0.1%) is very suitable from the environmental point of view, reducing SO2 emissions. The results of the proximate analysis showed a high content of ashes and the gross calorific value within the range of most biomass waste, was 5100 kcal/kg.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

140-147

Citation:

Online since:

September 2015

Export:

Price:

[1] F. Pagnanelli, S. Mainelli, L. Toro, New biosorbent materials for heavy metal removal: product development guided by active site characterization. Water Research 42 (2008) 2953–62.

DOI: 10.1016/j.watres.2008.03.012

Google Scholar

[2] I. Ballesteros, M. Ballesteros, C. Cara, F. Sáez, E. Castro, P. Manzanares, M.J. Negro, J.M. Oliva, Effect of water extraction on sugars recovery from steam exploded olive tree pruning. Bioresour. Technol. 102 (2011) 6611– 6616.

DOI: 10.1016/j.biortech.2011.03.077

Google Scholar

[3] R. Spinelli, G. Picchi, Industrial harvesting of olive tree pruning residue for energy biomasa, Bioresour. Technol. 101 (2010) 730–735.

DOI: 10.1016/j.biortech.2009.08.039

Google Scholar

[4] A. García, M. González, J. Labidi, Evaluation of the effect of ultrasound on organosolv black liquor from olive tree pruning residues, Bioresour. Technol. 108 (2012) 155–161.

DOI: 10.1016/j.biortech.2012.01.010

Google Scholar

[5] A. Requejo, S. Peleteiro, G. Garrote, A. Rodríguez, L. Jiménez, Biorefinery of olive pruning using various processes, Bioresour. Technol. 111 (2012) 301–307.

DOI: 10.1016/j.biortech.2012.01.156

Google Scholar

[6] G. Blázquez, M. Calero de Hoces, C. Martínez García, M.T. Cotes Palomino, A. Ronda, M.A. Martín-Lara, Characterization and modeling of pyrolysis of the two-phase olive mill solid waste, Fuel Process. Technol., 126 (2014) 104–111.

DOI: 10.1016/j.fuproc.2014.04.020

Google Scholar

[7] G. Blázquez, A. Ronda, A. Pérez, M. Calero, Development and Characterization of Biosorbents To Remove Heavy Metals from Aqueous Solutions by Chemical Treatment of Olive Stone, Ind. Eng. Chem. Research, 52 (2013) 10809–10819.

DOI: 10.1021/ie401246c

Google Scholar

[8] M. Calero, A. Pérez, G. Blázquez, A. Ronda, M.A. Martín-Lara, Characterization of chemically modified biosorbents from olive tree pruning for the biosorption of lead, Ecol. Eng. 58 (2013) 344–354.

DOI: 10.1016/j.ecoleng.2013.07.012

Google Scholar

[9] H.I. Owamah, M.I. Alfa, S.O. Dahunsi, Optimization of biogas from chicken droppings with Cymbopogon citratus, Renewable Energy, 68 (2014) 366–371.

DOI: 10.1016/j.renene.2014.02.006

Google Scholar

[10] R. Alvarez, G. Lidén, Low temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production, Biomass Bioenerg. 33 (2009) 527–533.

DOI: 10.1016/j.biombioe.2008.08.012

Google Scholar

[11] A. Akbulut, R. Kose, A. Akbulut, Technical and Economic Assesments of biogas production in a family size digester utilizing diferent feedstock rotations: Döger case study, Int. J. Green Energy, 11 (2014) 113–128, (2014).

DOI: 10.1080/15435075.2012.752374

Google Scholar

[12] K.W. Pepper, D. Reichenberg, D.K. Hale, Properties of ion-exchange resins in relation to their structure. IV. Swelling and shrinkage of sulfonated polystyrenes of different cross-linking, J. Chem. Society, 1 (1952) 3129–3136.

DOI: 10.1039/jr9520003129

Google Scholar

[13] Technical Association of the Pulp and Paper Industry (TAPPI), TAPPI Test Methods, 2008–2009, TAPPI, Atlanta, USA, (2008).

Google Scholar

[14] B.L. Browning, Methods of Wood Chemistry, Interscience Publishers, New York, USA, (1967).

Google Scholar

[15] M.A. Martín-Lara, G. Blázquez, A. Ronda, A. Pérez, M. Calero, Development and characterization of biosorbents to remove heavy metals from aqueous solutions by chemical treatment of olive stone, Ind. and Eng. Chem. Research 52 (2013).

DOI: 10.1021/ie401246c

Google Scholar

[16] H. Haykiri-Acma, S. Yaman, S. Kucukbayrak, Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis, Fuel Process. Technol. 91 (2010) 759–764.

DOI: 10.1016/j.fuproc.2010.02.009

Google Scholar

[17] H. Lalhruaitluanga, K. Jayaram, M.N.V. Prasad, K.K. Kumar, Lead(II) adsorption from aqueous solutions by raw and activated charcoals of Melocannabaccifera Roxburgh (bamboo)-A comparative study, J. Hazard. Mater. 175 (2010), 311–318.

DOI: 10.1016/j.jhazmat.2009.10.005

Google Scholar

[18] F. Sebastián Nogues, D. García-Galindo, D. Rezeau, in: Prensa Universitaria de Zaragoza (Ed. ), Energía de la biomasa, Spain, Vol. I, (2010).

Google Scholar