Review of Geopolymer Materials for Thermal Insulating Applications

Article Preview

Abstract:

Geopolymer is an environmentally cementitious binder that does not require the existence of ordinary Portland cement (OPC). Geopolymer has many excellent advantages, including high early strength, low shrinkage, good thermal resistance and good chemical resistance. Based on previous research, geopolymer offered good resistance to corrosion, abrasion and heat. Fly ash, metakaolin, kaolin, and slag are regularly used raw materials for the preparation of geopolymer composites. Geopolymer composites also offer a potential environmental friendly product by reduce the carbon dioxide (CO2) emissions. This geopolymer material also offers an innovative and sustainable solution for maintaining infrastructure and also provides superior thermal, chemical and mechanical performance. This paper summarizes some research outcomes on alkali-activated binders along with the potential of geopolymer composites for thermal insulating applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-22

Citation:

Online since:

August 2015

Export:

Price:

[1] Sarker, P.K., S. Kelly and Z. Yao (2014). Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Materials & Design, 63, 584-592.

DOI: 10.1016/j.matdes.2014.06.059

Google Scholar

[2] Zeng, L., C. Dan-yang, Y. Xu, F. Chun-wei and P. Xiao-qin (2014). Novel method for preparation of calcined kaolin intercalation compound-based geopolymer. Applied Clay Science, 101, 637-642.

DOI: 10.1016/j.clay.2014.09.034

Google Scholar

[3] Duxson, P., A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo and J.S.J. van Deventer (2007). Geopolymer technology: the current state of the art. Journal of Materials Science, 42, 9, 2917-2933.

DOI: 10.1007/s10853-006-0637-z

Google Scholar

[4] Temuujin, J., A. Minjigmaa, W. Rickard and A. Van Riessen (2012). Thermal properties of spray-coated geopolymer-type compositions. Journal of thermal analysis and calorimetry, 107, 1, 287-292.

DOI: 10.1007/s10973-011-1766-4

Google Scholar

[5] Liyana, J., H. Kamarudin, A.M. Mustafa Al Bakri, M. Binhussain, C.M. Ruzaidi and A.M. Izzat (2013). Reviews on Fly Ash based Geopolymer Materials for Protective Coating Field Implementations.

Google Scholar

[6] Sofi, M., J. van Deventer, P. Mendis and G. Lukey (2007). Bond performance of reinforcing bars in inorganic polymer concrete (IPC). Journal of Materials Science, 42, 9, 3107-3116.

DOI: 10.1007/s10853-006-0534-5

Google Scholar

[7] Bell, J.L., P.E. Driemeyer and W.M. Kriven (2009). Formation of Ceramics from Metakaolin Based Geopolymers. Part II: K-Based Geopolymer. Journal of the American Ceramic Society, 92, 3, 607-615.

DOI: 10.1111/j.1551-2916.2008.02922.x

Google Scholar

[8] Alomayri, T., F.U.A. Shaikh and I.M. Low (2014). Mechanical and thermal properties of ambient cured cotton fabric-reinforced fly ash-based geopolymer composites. Ceramics International, 40, 9, Part A, 14019-14028.

DOI: 10.1016/j.ceramint.2014.05.128

Google Scholar

[9] Davidovits, J. (1994). Geopolymer: man-made rocks geosynthesis and the resulting development of very early high strength cement. J. Mater. Educ, 16, 91-139.

Google Scholar

[10] Temuujin, J., A. Minjigmaa, W. Rickard, M. Lee, I. Williams and A. van Riessen (2010). Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation. Journal of Hazardous Materials, 180, 1–3, 748-752.

DOI: 10.1016/j.jhazmat.2010.04.121

Google Scholar

[11] Deb, P.S., P. Nath and P.K. Sarker (2014).

Google Scholar

[12] Tho-in, T., V. Sata, P. Chindaprasirt and C. Jaturapitakkul (2012). Pervious high-calcium fly ash geopolymer concrete. Construction and Building Materials, 30, 366-371.

DOI: 10.1016/j.conbuildmat.2011.12.028

Google Scholar

[13] Adam, A.A. and Horianto (2014). The Effect of Temperature and Duration of Curing on the Strength of Fly Ash Based Geopolymer Mortar. Procedia Engineering, 95, 0, 410-414.

DOI: 10.1016/j.proeng.2014.12.199

Google Scholar

[14] Ryu, G.S., Y.B. Lee, K.T. Koh and Y.S. Chung (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and Building Materials, 47, 0, 409-418.

DOI: 10.1016/j.conbuildmat.2013.05.069

Google Scholar

[15] Yunsheng, Z., S. Wei and L. Zongjin (2010). Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Applied Clay Science, 47, 3–4, 271-275.

DOI: 10.1016/j.clay.2009.11.002

Google Scholar

[16] Varga, G. (2007). The structure of kaolinite and metakaolinite. Epitoanyag, 59, 1, 6-9.

Google Scholar

[17] Heah, C.Y., H. Kamarudin, A.M. Mustafa Al-Bakri, M. Luqman, K. Nizar and Y.M. Liew (2011). Potential application of kaolin without calcine as greener concrete: a review.

DOI: 10.1016/j.conbuildmat.2011.12.079

Google Scholar

[18] Heah, C.Y., H. Kamarudin, A.M. Mustafa Al Bakri, M. Binhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi and Y.M. Liew (2012).

DOI: 10.1016/j.conbuildmat.2011.12.079

Google Scholar

[19] Temuujin, J., A. Minjigmaa, W. Rickard, M. Lee, I. Williams and A. van Riessen (2009). Preparation of metakaolin based geopolymer coatings on metal substrates as thermal barriers. Applied Clay Science, 46, 3, 265-270.

DOI: 10.1016/j.clay.2009.08.015

Google Scholar

[20] Rovnaník, P. (2010). Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and Building Materials, 24, 7, 1176-1183.

DOI: 10.1016/j.conbuildmat.2009.12.023

Google Scholar

[21] Davidovits, J. (1994). Properties of geopolymer cements. First international conference on alkaline cements and concretes, 1994. 131-149.

Google Scholar

[22] Tippayasam, C., P. Keawpapasson, P. Thavorniti, T. Panyathanmaporn, C. Leonelli and D. Chaysuwan (2014). Effect of Thai Kaolin on properties of agricultural ash blended geopolymers. Construction and Building Materials, 53, 455-459.

DOI: 10.1016/j.conbuildmat.2013.11.079

Google Scholar

[23] Mustafa Al Bakri, A.M., L. Jamaludin, H. Kamarudin, M. Binhussain, M.C. Ruzaidi and A.M. Izzat (2013). Study on Fly Ash Based Geopolymer for Coating Applications. Advanced Materials Research, 686, 227-233.

DOI: 10.4028/www.scientific.net/amr.686.227

Google Scholar

[24] Mustafa Al Bakri, A.M., H. Kamarudin, M. Binhussain, I.K. Nizar, Y. Zarina and A.R. Rafiza (2011). The Effect of Curing Temperature on Physical and Chemical Properties of Geopolymers. Physics Procedia, 22, 0, 286-291.

DOI: 10.1016/j.phpro.2011.11.045

Google Scholar

[25] Kamseu, E., B. Nait-Ali, M.C. Bignozzi, C. Leonelli, S. Rossignol and D.S. Smith (2012).

Google Scholar

[26] Zhang, Z., X. Yao and H. Zhu (2010). Potential application of geopolymers as protection coatings for marine concrete: I. Basic properties. Applied Clay Science, 49, 1–2, 1-6.

DOI: 10.1016/j.clay.2010.01.014

Google Scholar

[27] Cheng, T. and J. Chiu (2003). Fire-resistant geopolymer produced by granulated blast furnace slag. Minerals Engineering, 16, 3, 205-210.

DOI: 10.1016/s0892-6875(03)00008-6

Google Scholar

[28] Mustafa Al Bakri, A.M., L. Jamaludin, K. Hussin, M. Bnhussain, C.M. Ruzaidi and A.M. Izzat (2012).

Google Scholar

[29] Sun, Z., H. Cui, H. An, D. Tao, Y. Xu, J. Zhai and Q. Li (2013). Synthesis and thermal behavior of geopolymer-type material from waste ceramic. Construction and Building Materials, 49, 0, 281-287.

DOI: 10.1016/j.conbuildmat.2013.08.063

Google Scholar

[30] Pan, Z., J. Sanjayan and B.V. Rangan (2009). An investigation of the mechanisms for strength gain or loss of geopolymer mortar after exposure to elevated temperature. Journal of Materials Science, 44, 7, 1873-1880.

DOI: 10.1007/s10853-009-3243-z

Google Scholar

[31] Vaou, V. and D. Panias (2010). Thermal insulating foamy geopolymers from perlite. Minerals Engineering, 23, 14, 1146-1151.

DOI: 10.1016/j.mineng.2010.07.015

Google Scholar

[32] Papadopoulos, A.M. (2005). State of the art in thermal insulation materials and aims for future developments. Energy and Buildings, 37, 1, 77-86.

DOI: 10.1016/j.enbuild.2004.05.006

Google Scholar