Computational Analysis of the Interaction between Impregnation, Forming and Curing in Pultrusion

Article Preview

Abstract:

Numerical and analytical models dealing with different physics involved in pultrusion are combined in the optic of an integrated analysis of the process. The impregnation stage is simulated by means of a CFD multiphase model, evaluating the pressure and velocity field in the liquid resin. Composite temperature and degree of cure are inferred using 3D thermo-chemical models. Finally, contact conditions, stresses and strains are derived applying computational simulation and analytical models, in order to predict the final pulling force. Different product sizes are considered, simulating suitable processing condition.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

889-894

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] Y.S. Song, J.R. Youn, T.G. Gutowski, Life cycle energy analysis of fiber-reinforced composites, Composites: Part A 40 (2009), 1257–1265.

DOI: 10.1016/j.compositesa.2009.05.020

Google Scholar

[2] T.F. Starr, Pultrusion for engineers, Woodhead Publishing Limited, (2000).

Google Scholar

[3] M. Valliappan, J.A. Roux, J.G. Vaughan, E.S. Arafat, Die and post-die temperature and cure in graphite-epoxy composites, Compos. Part B-Eng 27 (1996), 1-9.

DOI: 10.1016/1359-8368(95)00001-1

Google Scholar

[4] Y.R. Chachad, J.A. Roux, J.G. Vaughan, E. Arafat, Three-dimensional characterization of pultruded fiberglass-epoxy composite materials, J. Reinf. Plast. Comp. 14 (1995), 495-12.

DOI: 10.1177/073168449501400506

Google Scholar

[5] I. Baran, J.H. Hattel, C.C. Tutum, Thermo-Chemical Modelling Strategies for the Pultrusion Process, App. Compos. Mat. 20 (2013), 1247-1263.

DOI: 10.1007/s10443-013-9331-x

Google Scholar

[6] P. Carlone, G.S. Palazzo, R. Pasquino, Pultrusion manufacturing process development by computational modelling and methods, Math. Comput. Model. 44 (2006), 701-709.

DOI: 10.1016/j.mcm.2006.02.006

Google Scholar

[7] I. Baran, C.C. Tutum, M.W. Nielsen, J.H. Hattel, Process induced residual stresses and distortions in pultrusion, Compos Part B: Eng 51 (2013), 148-161.

DOI: 10.1016/j.compositesb.2013.03.031

Google Scholar

[8] P. Carlone, I. Baran, J.H. Hattel, G.S. Palazzo, Computational Approaches for Modeling the Multiphysics in Pultrusion Process, Advances in Mechanical Engineering 2013 (2013), Article ID 301875, 1-14.

DOI: 10.1155/2013/301875

Google Scholar

[9] K.S. Raper, J.A. Roux, T.A. McCarty, J.G. Vaughan, Investigation of the pressure behaviour in a pultrusion die for glass-fibre/epoxy composites, Compos. Part A 30 (1999), 1123–1132.

DOI: 10.1016/s1359-835x(98)00196-1

Google Scholar

[10] S.U.K. Gadam, J.A. Roux, T.A. McCarty, J.G. Vaughan, The impact of pultrusion processing parameters on resin pressure rise inside a tapered cylindrical die for glass-fibre/epoxy composites, Compos. Sci. Tech. 60 (2000), 945-958.

DOI: 10.1016/s0266-3538(99)00181-5

Google Scholar

[11] I. Baran, R. Akkermann, J.H. Hattel, Material characterization of a polyester resin system for the pultrusion process, Compos. Part B 64 (2014), 194-201.

DOI: 10.1016/j.compositesb.2014.04.030

Google Scholar

[12] I. Baran, R. Akkermann, J.H. Hattel, Modelling the pultrusion process of an industrial L-shaped composite profile, Compos. Struct 118 (2014), 37-48.

DOI: 10.1016/j.compstruct.2014.07.018

Google Scholar

[13] I. Baran, P. Carlone, J.H. Hattel, G.S. Palazzo R. Akkermann, The effect of product size on the pulling force in pultrusion, Key, Eng Mat 611-612 (2014), 1763-1770.

DOI: 10.4028/www.scientific.net/kem.611-612.1763

Google Scholar

[14] P. Carlone, G.S. Palazzo, Computational Modeling of the Pulling Force in a Conventional Pultrusion Process, Adv. Mat. Res. 772 (2013), 399-406.

DOI: 10.4028/www.scientific.net/amr.772.399

Google Scholar