Internal Structure of the Sheared Textile Composite Reinforcement: Analysis Using X-Ray Tomography

Article Preview

Abstract:

X-ray micro computed tomography (Micro-CT) is a non-destructive technique that can provide information on the internal structure of materials. The purpose of micro-CT is to assess the presence of defects as well as characterizing internal structures and potential damage present in the produced part. Simple shear is an interesting deformation mechanism for woven fabric draping. The internal structure change of the carbon fibre twill fabric after shear deformation is chosen as a subject of this paper. Parameters of the mesoscopic internal structure of the woven fabric like cross section, shape, area, and middle line coordinates can be obtained from micro-CT images through image processing procedures. Details of the image data processing for sheared fabric cross sections are discussed. This paper illustrates the possibilities of micro-focus computer tomography in materials research, namely for defining geometrical properties of textile. Image processing is also used for the recognition of fibre direction in the yarns. Described methodology can be applied for determining structure of a fabric, and the results can be used for further micromechanical modelling. Identification of the fibres orientation is important for estimation of the mechanical properties of composites and can be achieved with image processing techniques.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

325-330

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] Nguyen M., Herszberg I., Paton R. The shear properties of woven carbon fabric. Composite Structures 1999; 47(1-4): 767-779.

DOI: 10.1016/s0263-8223(00)00051-9

Google Scholar

[2] Harjkova G., Barburski M., Lomov S. V., Kononova O., Verpoest I. Weft knitted loop geometry of glass and steel fibre fabrics measured with X-ray micro-computer tomography. Textile Research Journal 2013; 84: 500-512.

DOI: 10.1177/0040517513503730

Google Scholar

[3] Barburski M., Masajtis J. Modelling of the change in structure of woven fabric under mechanical loading. Fibres & Textiles in Eastern Europe 2009; 17(1): 39-44.

Google Scholar

[4] Lomov S. V., Barburski M., Stoilova T., Verpoest I., Akkerman R., Loendersloot R., Thije R. H. W. t. Carbon composites based on multiaxial multiply stitched preforms. Part 3: Biaxial tension, picture frame and compression tests of the preforms. Composites Part A: Applied Science and Manufacturing 2005; 36(9): 1188-1206.

DOI: 10.1016/j.compositesa.2005.01.015

Google Scholar

[5] Arbter R., Beraud J. M., Binetruy C., Bizet L., Bréard J., Comas-Cardona S., Demaria C., Endruweit A., Ermanni P., Gommer F., Hasanovic S., Henrat P., Klunker F., Laine B., Lavanchy S., Lomov S. V., Long A., Michaud V., Morren G., Ruiz E., Sol H., Trochu F., Verleye B., Wietgrefe M., Wu W., Ziegmann G. Experimental determination of the permeability of textiles: A benchmark exercise. Composites Part A: Applied Science and Manufacturing 2011; 42(9): 1157-1168.

DOI: 10.1016/j.compositesa.2011.04.021

Google Scholar

[6] Desplentere, F., Lomov, S., Woerdeman, D., Verpoest, I., Wevers, M., Bogdanovich, A. (2005). Micro-CT characterization of variability in 3D textile architecture. Composites science and technology, 65 (13), 1920-(1930).

DOI: 10.1016/j.compscitech.2005.04.008

Google Scholar

[7] Badel. P., Vidal-Salle. E., Maire. E., Boisse. P. Simulation and tomography analysis of textile composite reinforcement deformation at mesoscopic scale. Composites Science and Technology 2008; 68(12): 2433-2440.

DOI: 10.1016/j.compscitech.2008.04.038

Google Scholar

[8] Hivet G and Boisse P. Consistent 3D geometrical model of fabric elementary cell. Application to a meshing preprocessor for 3D finite element analysis. Finite Elem Anal Des 2005; 42: 25-49.

DOI: 10.1016/j.finel.2005.05.001

Google Scholar

[9] L.P. Djukic, I. Herszberg, W.R. Walsh, G.A. Schoeppner, B.G. Prusty Contrast enhancement in visualisation of woven composite architecture using a MicroCTScanner. Part 2: Tow and preform coatings Compos Part A, 40 (12) (2009), pp.1870-1879.

DOI: 10.1016/j.compositesa.2009.04.002

Google Scholar

[10] Pazmino, J., Carvelli V., Lomov S.V., Micro-CT analysis of the internal deformed geometry of a non-crimp 3D orthogonal weave e-glass composite reinforcement, Composites Part B, 28 November 2013 2013 DOI: 10. 1016/j. compositesb. 2013. 11. 024.

DOI: 10.1016/j.compositesb.2013.11.024

Google Scholar

[11] Vernet, N., E. Ruiz, S. Advani, J.B. Alms, M. Aubert, M. Barburski, B. Barari, J.M. Beraud, D.C. Berg, N. Correia, M. Danzi, T. Delavière, M. Dickert, C. Di Fratta, A. Endruweit, P. Ermanni, G. Francucci, J.A. Garcia, A. George, C. Hahn, F. Klunker, S.V. Lomov, A. Long, B. Louis, J. Maldonado, R. Meier, V. Michaud, H. Perrin, K. Pillai, E. Rodriguez, F. Trochu, S. Verheyden, M. Wietgrefe, W. Xiong, S. Zaremba, and G. Ziegmann, Experimental determination of the permeability of engineering textiles: Benchmark II. Composites Part A: Applied Science and Manufacturing, 2014. 61: 172-184.

DOI: 10.1016/j.compositesa.2014.02.010

Google Scholar

[12] Ivanov, D.S. and S.V. Lomov, Compaction behaviour of dense sheared woven preforms: experimental observations and analytical prediction. Composites Part A, Compos Part A: Appl Sci Manuf. 2014, Available at http: /dx. doi. org/10. 1016/j. compos.

DOI: 10.1016/j.compositesa.2014.05.002

Google Scholar

[13] Kucher NK, Danil'chuk EL. Deformation Analysis of 2/2 Twill Weave Fabrics. Strength of Materials. 2012; 44(1): 72-80.

DOI: 10.1007/s11223-012-9351-z

Google Scholar

[14] Walther J, Simacek P, Advani SG. The effect of fabric and fiber tow shear on dual scale flow and fiber bundle saturation during liquid molding of textile composites. Int J Mater Forming 2012; 5(1): 83-97.

DOI: 10.1007/s12289-011-1060-9

Google Scholar

[15] Cao J, Akkerman R, Boisse P, Chen J, Cheng HS, de Graaf EF, et al. Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Composites Part A 2008; 39(6): 1037-53.

DOI: 10.1016/j.compositesa.2008.02.016

Google Scholar

[16] Vanaerschot, A., B.N. Cox, M. Blacklock, G. Kerckhofs, M. Wevers, S.V. Lomov, and D. Vandepitte, Stochastic framework for quantifying the geometrical variability of laminated textile composites using micro-computed tomography. Composites Part A, 2013. 44: 122-131.

DOI: 10.1016/j.compositesa.2012.08.020

Google Scholar

[17] Vanaerschot, A., B.N. Cox, S.V. Lomov, and D. Vandepitte, Stochastic multi-scale modelling of textile composites based on internal geometry variability. Computers and Structures, 2013. 122: 55-64.

DOI: 10.1016/j.compstruc.2012.10.026

Google Scholar

[18] Anzelotti, G., G. Nicoletto, and E. Riva, Mesomechanic strain analysis of twill-weave composite lamina under unidirectional in-plane tension. Composites Part A-Applied Science and Manufacturing, 2008. 39(8): 1294-1301.

DOI: 10.1016/j.compositesa.2008.01.006

Google Scholar

[19] Vallons K, Behaeghe A, Lomov SV, Verpoest I. Impact and post-impact properties of a carbon fibre non-crimp fabric and a twill weave composite. Composites Part A-Applied Science and Manufacturing. 2010; 41(8): 1019-1026.

DOI: 10.1016/j.compositesa.2010.04.008

Google Scholar

[20] Barburski M, Zhang X., Straumit I., Lomov S. V, X-ray analysis of sheared textile composite reinforcement, 16th European Conference on Composite Materials ECCM16, 22-26 June 2014, Seville, Spain, Electronic edition.

DOI: 10.4028/www.scientific.net/kem.651-653.325

Google Scholar

[21] Barburski M., Straumit I., Zhang X., Wevers M., Lomov S.V., Micro-CT analysis of internal structure of sheared textile composite reinforcement Composites Part A, 2014 submitted.

DOI: 10.1016/j.compositesa.2015.03.008

Google Scholar

[22] Straumit I., Lomov S.V. Wevers M. Quantification of the internal structure and automatic generation of voxel models of textile composites from X-ray computed tomography data. Composites Part A, (2014).

DOI: 10.1016/j.compositesa.2014.11.016

Google Scholar

[23] Straumit I., Lomov S.V. Wevers M. Quantification of the internal structure and automatic generation of voxel models of textile composites from X-ray computed tomography data. Composites Part A, (2014).

DOI: 10.1016/j.compositesa.2014.11.016

Google Scholar

[24] Brun R., Rademakers F. ROOT - An object oriented data analysis framework. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment. 1997; 389(1-2): 81-86.

DOI: 10.1016/s0168-9002(97)00048-x

Google Scholar