Comparative Photocatalytic Properties of Cu2O from Octahedron to Sphere Structures

Article Preview

Abstract:

Cu2O, a p-type semiconductor, has broad potential applications, especially as a visible-light photocatalyst. This paper presents a simple water-bath reflux to prepare Cu2O micro/nanoparticles. The morphology evolution from intact octahedrons to surface-pitted spheres was obtained by adjusting reducing agent and additive. Reflectance spectra show similar photo-absorption intensity and the same range from 250 nm to 650 nm. However, they perform different photocatalytic activity. Intact octahedron has the best photodegradation ability and next is vertex-and edge-damaged octahedron, the lowest for vertex-free polyhedrons and surface-pitted spheres. The enhanced photocatalytic activity for intact octahedrons should to be attributed to its surface characteristics of high index. Our study not only provides a simple method for controllable preparation of Cu2O micro/nanoparticles with different morphologies but also confirms the effect of morphologies on photocatalytic activity.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

45-50

Citation:

Online since:

April 2014

Export:

Price:

* - Corresponding Author

[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[2] (a) G.R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations, Angew. Chem. Int. Ed. 50 (2011).

DOI: 10.1002/anie.201000235

Google Scholar

[3] (a) H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Nano-photocatalytic materials: possibilities and challenges, Adv. Mater. 24 (2012).

DOI: 10.1002/adma.201102752

Google Scholar

[4] X.B. Chen, S.S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891-2959.

DOI: 10.1021/cr0500535

Google Scholar

[5] A. Mclaren, T. Valdes-Solis, G.Q. Li, S.C. Tsang, Shape and size effects of ZnO nanocrystals on photocatalytic activity, J. Am. Chem. Soc, 131 (2009) 12540-12541.

DOI: 10.1021/ja9052703

Google Scholar

[6] Z.L. Wang, Splendid one-dimensional nanostructures of zinc oxide: nanomaterial family for nanotechnology, ACS Nano, 2 (2008) 1987-(1992).

DOI: 10.1021/nn800631r

Google Scholar

[7] Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides, Science, 291 (2001) 1947-(1949).

Google Scholar

[8] Z.H. Kang, C.H.A. Tsang, Z.D. Zhang, M.L. Zhang, N.B. Wong, J.A. Zapien, Y.Y. Shan, S.T. Lee, A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: From quantum dots to nanowires, J. Am. Chem. Soc. 129 (2007).

DOI: 10.1021/ja068894w

Google Scholar

[9] Z.H. Kang, C.H.A. Tsang, N.B. Wong, Z.D. Zhang, S.T. Lee, Silicon quantum dots: A general photocatalyst for reduction, decomposition, and selective oxidation reactions, J. Am. Chem. Soc. 129 (2007) 12090-12091.

DOI: 10.1021/ja075184x

Google Scholar

[10] Z.H. Kang, Y. Liu, C.H.A. Tsang, D.D.D. Ma, X. Fan, N.B. Wong, S.T. Lee, Water-soluble silicon quantum dots with fine wavelength-tunable photoluminescence, Adv. Mater. 21 (2009) 661-664.

DOI: 10.1002/adma.200801642

Google Scholar

[11] S. Ishizuka, T. Maruyama, K. Akimoto, Thin-film deposition of Cu2O by reactive radio-frequency magnetron sputtering, Jpn J. Appl. Phys. 39 (2000) 786–788.

DOI: 10.1143/jjap.39.l786

Google Scholar

[12] G. Jimenez-Cadena, E. Comini, M. Ferroni, G. Sberveglieri, Synthesis of Cu2O bi-pyramids by reduction of Cu(OH)2 in solution, Mater. Lett. 64 (2010) 469–471.

DOI: 10.1016/j.matlet.2009.11.051

Google Scholar

[13] J.S. Xu, D.F. Xue, Five branching growth patterns in the cubic crystal system: A direct observation of cuprous oxide microcrystals, Acta Mater. 55 (2007) 2397–2406.

DOI: 10.1016/j.actamat.2006.11.032

Google Scholar

[14] Y. Chang and H. Zeng: Manipulative synthesis of multipod framework for selforganization and self-amplification of Cu2O microcrystals, Cryst. Growth Des. 2 (2004) 273–278.

DOI: 10.1021/cg034146w

Google Scholar

[15] Y. Tan, X. Xue, Q. Peng, H. Zhao, T. Wang, Y. Li, Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios, Nano. Lett. 7 (2007) 3723–3728.

DOI: 10.1021/nl0721259

Google Scholar

[16] X. Liu, H. Renzhi, S. Xiong, Y. Liu, L. Chai, K. Bao, Y. Qian, Well-aligned Cu2O nanowire arrays prepared by an ethylene glycol-reduced process, Mater. Chem. Phys. 114 (2009) 213–216.

DOI: 10.1016/j.matchemphys.2008.09.009

Google Scholar

[17] L. Zhang, H. Wang, Cuprous oxide nanoshells with geometrically tunable optical properties, ACS Nano. 5 (2011) 3257–3267.

DOI: 10.1021/nn200386n

Google Scholar

[18] W.C. Huang, L.M. Lyu, Y.C. Yang, M. H. Huang, Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity, J. Am. Chem. Soc. 134 (2012) 1261–1267.

Google Scholar