Inclusion of Lignocellulosic Fibers in Plastic Composites

Article Preview

Abstract:

Solutions for the production of sustainable plastics have motivated the scientific community to search for new alternatives for the replacement of raw materials from non-renewable sources such as glass fibers. Therefore, plant fibers appear to be a feasible alternative, since they present low cost, suitable mechanical strength, wide availability, as well as are renewable. This work aimed to evaluate the replacement of glass fibers by lignocellulosic fiber in plastic composites used in civil construction sectors. The resin used was ortho unsaturated polyester. Three plant fibers were tested (sugar cane bagasse, eucalypt and pine) with and without chemical modification. The chemical modifications were performed with sodium hydroxide. The composites were evaluated by their physical and mechanical properties. The initial results showed the potential of using plant fiber in the production of fiber-reinforced plastic composites. Keywords: plant fibers, residues, polyester resin

You might also be interested in these eBooks

Info:

Periodical:

Pages:

442-446

Citation:

Online since:

March 2014

Export:

Price:

* - Corresponding Author

[1] A. Casaril, E.R. Gomes, M.R. Soares, M.C. FredeL, H.A. Al-qureshi, Análise micromecânica dos compósitos com fibras curtas e partículas, Revista Matéria. 12 (2007) 408–419.

DOI: 10.1590/s1517-70762007000200019

Google Scholar

[2] M.A. Leão, Fibras de Licuri: Um reforço alternativo de compósitos poliméricos, 109 p. Dissertação (Mestrado) – Universidade Federal do Rio Grande do Norte, (2008).

DOI: 10.17533/udea.iee.v32n2a08

Google Scholar

[3] K. Raghu, P.N. Kahanam, S.V. Naidu, Chemical resistence studies of silk/sisal fiber-reinforced unsaturade polyester-based hybrid composites, Journal of Reinforced Plastics and Composites, 29 (2010) 343-345.

DOI: 10.1177/0731684408097770

Google Scholar

[4] R. Macvicar, L.M. Matuana, J.J. Balatinecz, Aging mechanism in cellulose fiber reinforced cement composites, Cement and Concrete Composites, 21 (1999) 189–96.

DOI: 10.1016/s0958-9465(98)00050-x

Google Scholar

[5] N. Soykeabkaew, C. Sian, S. Gea, T. Nishino, T. Peijs, All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose, Cellulose, 16 (2009) 435–444.

DOI: 10.1007/s10570-009-9285-1

Google Scholar

[6] L.H. Carvalho, W. S Cavalcanti, Propriedades mecânicas de tração de compósitos poliéster/ tecidos híbridos sisal/vidro, Polímeros: Ciência e tecnologia, 16 (2006) 33-37.

DOI: 10.1590/s0104-14282006000100009

Google Scholar

[7] R.V. Da silva, E.M.F. Aquino, L. PS. Rodrigues, A.R.F. Barros, Desenvolvimento de um compósito laminado híbrido com fibras natural e sintética, Revista Matéria, 13 (2008) 154–161.

DOI: 10.1590/s1517-70762008000100019

Google Scholar

[8] K. Joseph, E.S. Medeiros, L.H. Carvalho, Compósitos de matriz poliéster reforçado por fibras curtas de sisal, Polímeros: Ciência e Tecnologia, out/dez (1999) 136-141.

DOI: 10.1590/s0104-14281999000400023

Google Scholar

[9] J.F.S. Oliveira, Estudos da influência da configuração em compósitos poliméricos híbridos, Dissertação (Mestrado) – Universidade Federal do Rio Grande do Norte, (2007).

DOI: 10.19131/rpesm.317

Google Scholar

[10] A.M. Santos, S.C. Amico, T.H.D. Sydenstricker, Desenvolvimento de compósitos híbridos polipropileno/fibras de vidro e coco para aplicações de engenharia, In: 17° CBECIMat – Congresso Brasileiro de Engenharia e Ciência dos Materiais, Foz do Iguaçu, PR, (2006).

DOI: 10.20906/cps/cb-07-0050

Google Scholar

[11] C.A.B. Vieira, N.M.L. Mondadore, E. Freire, S.C. Amico, A.J. Zattera, Interferência da lavagem de fibras sobre o desempenho do sizing nas propriedades mecânicas em compósitos híbridos vidro/sisal, Revista Iberoamericana de Polímeros, 10 (2009).

DOI: 10.4322/polimeros.2014.063

Google Scholar

[12] S.K. GarkhaiL, R.W.H. Heijenrath, T. Peijs, Mechanical propertie sof natural-fiber-mat-reinforced thermoplastics based on flax fibers and polypropylene, Applied Composite Materials 7, 5 (2000) 351–372.

Google Scholar

[13] D. Pasquini, M.N. Belgacem, A. Gandini, A.A.S. Curvelo, Surface esterification of celulose fibers: Characterization by DRIFT and contect angle measurements, Journal of Colloid and Interface Science, 295 (2006) 79-83.

DOI: 10.1016/j.jcis.2005.07.074

Google Scholar

[14] A. Stamboulis, C.A. Baillie, S.K. GarkhaiL, H.G.H. Van melick, T. Peijs, Environmental durability of flax fibers and their composites based on polypropylene matrix, Applied Composite Materials, 7 (2000) 273–294.

Google Scholar

[15] A.L. Abreu, Modificação química de resíduo lignocelulósico para preparação de compósito, Dissertação (Mestrado) – Universidade Federal de Lavras, Lavras, (2011).

DOI: 10.32406/v6n1/2023/103-112/agrariacad

Google Scholar

[16] American Society for Testing and Materials, ASTM D-570, Standard test method for water absorption on plastics, (1998).

Google Scholar

[17] American Society for Testing and Materials, ASTM D-790, Standart test methods for flexural properties of unreinforced and reinforced plastics and electrical insulaling materials, (2000).

Google Scholar

[18] E.M. S Sanchez, C.S. Cavani, C.V. Leal, C.G. Sanchez, Compósito de resina de poliéster insaturado com bagaço de cana-de-açúcar: influência do tratamento das fibras nas propriedades, Polímeros, 20 (2010) 194-200.

DOI: 10.1590/s0104-14282010005000034

Google Scholar