Study of Perpendicular Magnetic Anisotropy in Co/Au Multilayer Probed by Magnetic Compton Profile

Article Preview

Abstract:

Magnetic Compton profiles (MCPs) of Co/Au multilayers have been measured and analyzed by DV-Xα cluster model calculations from a viewpoint of perpendicular magnetic anisotropy (PMA). The PMA and the MCPs are discussed for the presently obtained results for Co/Au, along with the previously obtained results for Co/Pd and Co/Pt. A Co/Au multilayer shows a weak PMA which is caused by |m|=1 states of Co 3d electrons at a smooth Co/Au interface. The increase of the interface-to-volume ratio plays the main role in determining the perpendicular anisotropy in Co/Au multilayers. The strain of a Co layer can have a secondary role in determining the magnetic anisotropy in Co/Au multilayers, although the strain dominates PMA in the case of Co/Pd and Co/Pt multilayers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-14

Citation:

Online since:

December 2013

Export:

Price:

[1] P. F. Carcia, A. D. Meinhaldt and A. Suna: Appl. Phys. Lett. 47 (1989), p.178.

Google Scholar

[2] F. J. A. den Broeder, D. Kuiper, H. C. Donkersloot and W. Hoving: Appl. Phys. A 49 (1989), p.507.

Google Scholar

[3] F. J. A. den Broeder, D. Kuiper, A. P. van de Mosselaer and W. Hoving: Phys. Rev. Lett. 60 (1988), p.2769.

DOI: 10.1103/physrevlett.60.2769

Google Scholar

[4] P. F. Carcia: J. Appl. Phys. 63 (1988), p.5066.

Google Scholar

[5] H. Judy: J. Magn. Magn. Mater 287 (2005), p.16.

Google Scholar

[6] D. Weller, Y. Wu, J. Stohr, M. G. Samant, B. D. Hermsmeier and C. Chappert: Phys. Rev. B 49 (1994), p.12888.

Google Scholar

[7] G. H. O. Daalderop, P. J. Kelly and M. F. H. Schuurmans: Phys. Rev. B 50 (1994), p.9989.

Google Scholar

[8] N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Ktayama, M. Nývlt and Y. Suzuki: Phys. Rev. Lett. 81 (1998), p.5229.

DOI: 10.1103/physrevlett.81.5229

Google Scholar

[9] T. Asahi, K. Kuramochi, J. Kawaji, T. Onoue, T. Osaka and M. Saigo: J. Magn. Magn. Mater. 235 (2001), p.87.

Google Scholar

[10] K. Kyuno, J. -G. Ha and R. Yamamoto: Phys. Rev. B 54, 1092 (1996).

Google Scholar

[11] K. Kyuno, J. -G. Ha, R. Yamamoto and S. Asano: J. Phys. Condens. Matter 8 (1996), p.3297.

Google Scholar

[12] K. Kyuno, J. -G. Ha, R. Yamamoto and S. Asano: Solid State Comm. 98 (1996), p.327.

Google Scholar

[13] H. Nemoto, H. Nakagawa and Y. Hosoe: IEEE Trans. Mag. 39 (2003), p.2714.

Google Scholar

[14] H. Nemoto and Y. Hosoe: J. Appl. Phys. 97 (2005), p. 10J109.

Google Scholar

[15] N. Sakai in X-Ray Compton Scattering, edited by M. J. Cooper et al., Oxford (2004).

Google Scholar

[16] N. Sakai: J. Appl. Crystallogr. 29 (1996), p.81.

Google Scholar

[17] A. Koizumi, S. Miyaki, Y. Kakutani, H. Koizumi, N. Hiraoka, K. Makoshi, N. Sakai, K. Hirota and Y. Murakami: Phys. Rev. Lett., 86 (2001), p.5589.

Google Scholar

[18] P. K. Lawson, J. E. McCarthy, M. J. Cooper, E. Zukowski, D. N. Timms, F. Itoh, H. Sakurai, Y. Tanaka, H. Kawata and M. Ito: J. Phys. Condens. Matter, 7 (1995), p.389.

DOI: 10.1088/0953-8984/7/2/017

Google Scholar

[19] Y. Kakutani, Y. Kubo, A. Koizumi, N. Sakai, B.L. Ahuja and B. K. Sharma: J. Phys. Soc. Japan 72 (2003), p.599.

Google Scholar

[20] M. Ota, H. Sakurai, F. Itoh, M. Itou and Y. Sakurai: J. Phys. Chem. Solids. 65 (2004), p. (2065).

Google Scholar

[21] H. Sakurai, M. Ota, M. Itou, Y. Sakura and A. Koizumi: Appl. Phys. Lett. 88 (2006), p.062507.

Google Scholar

[22] K. Suzuki, N. Go, S. Emoto, R. Yamaki, M. Itou, Y. Sakurai and H. Sakurai: Key Eng. Mater. 497 (2012), p.8.

Google Scholar

[23] N. Go, K. Suzuki, S. Emoto, M. Itou, Y. Sakurai and H. Sakurai: Key Eng. Mater. 534 (2013), p.7.

Google Scholar

[24] G. Gubbiotti, G. Carlotti, F. Albertini, F. Casoli, E. Bontempi, L. E. Depero, H. Koo and R. D. Gomez: Thin Solid Films 428 (2003), p.102.

DOI: 10.1016/s0040-6090(02)01282-8

Google Scholar