Crystal Structures and Surface Morphologies of LaGaO3-Based Epitaxial Thin Films Grown by a Pulse Laser Deposition Method

Article Preview

Abstract:

High-quality La0.84Sr0.16Ga0.26Mg0.74O3-δ (LSGM) epitaxial thin films were successfully grown on (100)-SrTiO3 (STO) substrates at a temperature of 800 °C by a pulsed laser deposition (PLD) method with KrF excimer laser pulses at an ozone pressure of 1.3 × 103 Pa. X-ray diffraction rocking curve measurements showed that the LSGM films had a full-width at half-maximum (FWHM) value of 0.11 °for out-of-plane 002 reflection, which was smaller than that reported for LaGaO3 films grown by atomic layer deposition methods (0.18 o). The reciprocal spaces mapping of 103 refraction showed that the LSGM films had a slightly larger lattice parameter a (out-of-plane) of 0.393 nm than a// (in-plane) of 0.391 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-156

Citation:

Online since:

September 2013

Export:

Price:

[1] D. Pergolesi, E. Fabbri, A. D'Epifanio, E. Bartolomeo, A. Tebano, S. Sanna, S. Licoccia, G. Balestrino and E. Traversa, Nat. Mater., 10, 1038, 846 (2010).

DOI: 10.1038/nmat2837

Google Scholar

[2] D. Marrero-López, J. Ruiz-Morales, J. Peña-Martínez, M. Martín-Sedeño, J. Ramos-Barrado, Solid State Ionics, 186 , 44 (2011).

DOI: 10.1016/j.ssi.2011.01.015

Google Scholar

[3] J. Yan, H. Matsumoto, T. Akbay, T. Yamada, T. Ishihara, J. Power Sources, 157, 714 (2006).

Google Scholar

[4] T. Ishihara, J. Tabuchi, S. Ishikawa, J. Yan, M. Enoki, H. Matsumoto, Solid State Ionics, 177, 1949 (2006).

DOI: 10.1016/j.ssi.2006.01.044

Google Scholar

[5] S. Souza, S. Visco, L. Jonghe, Solid State Ionics, 98 57 (1997).

Google Scholar

[6] N. Watanabe, T. Ooe, T. Ishihara, J. Power Sources, 199, 117 (2012).

Google Scholar

[7] T. Ishihara, J. MMIJ, 125, 395 (2010).

Google Scholar

[8] M. Guenter, M. Lerch, H. Boysen, D. Toebbens, E. Suard, C. Baehtz , J. Phys. Chem. Solids, 67, 1754 (2006).

DOI: 10.1016/j.jpcs.2006.04.001

Google Scholar

[9] M. Lerch, H. Boysen, T. Hansen, J. Phys. Chem. Solids, 62, 445 (2001).

Google Scholar

[10] M. Kajitani, M. Matsuda, A. Hoshikawa, K. Oikawa, S. Torii, T. Kamiyama, F. Izumi, and M. Miyake, Chem. Mater., 15, 3468 (2003).

DOI: 10.1021/cm030294y

Google Scholar

[11] T. Mathews, J. Sellar, B. Muddle, and P. Manoravi, Chem. Mater., 12, 917 (2000).

Google Scholar

[12] T. Ishihara, H. Eto, J. Yan, Int. J. Hydrogen Energy, 36, 1862 (2011).

Google Scholar

[13] S. Kanazawa, T. Ito, K. Yamada, T. Ohkubo, Y. Nomoto, T. Ishihara, Y. Takita, Surf. Coat. Technol., 169, 508 (2003).

Google Scholar

[14] M. Nieminen, S. Lehto and L. Niinisto, J. Mater. Chem., 11, 3148 (2001).

Google Scholar

[15] G.H. Lee, M. Yoshimoto, and H. Koinuma, Appl. Surf. Sci., 127, 393 (1998).

Google Scholar

[16] Jeffrey M. Warrender, and Michael J. Aziz, Phys. Rev. B, 75, 085433 (2007).

Google Scholar