Extent of the Surface Region in Notched Middle Cracked Tension Specimens

Article Preview

Abstract:

This article aims at evaluating the extent of the surface region in notched Middle Cracked Tension specimens. Firstly, a fully automatic fatigue crack growth technique is developed to obtain stable crack shapes. After that, the stress triaxiality along the crack front is evaluated for different notch shapes. Then, objective criteria are defined to quantify the extent of the surface region from the stress triaxiality data collected. Next, the extent of the surface region is related to the elastic stress concentration factor of the uncracked geometry by a linear relationship. Finally, empirical two-constant equations able to evaluate the extent of the surface region from the thickness, notch radius, notch depth and elastic stress concentration factor are formulated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-127

Citation:

Online since:

July 2013

Export:

Price:

[1] S. Chandrakanth, P. Pandey (1995). An isotropic damage model for ductile material. Engineering Fracture Mechanics 50, 457-465.

DOI: 10.1016/0013-7944(94)00214-3

Google Scholar

[2] B. Wang, N. Hu, Y. Kurobane, Y. Makino, S. Lie (2000). Damage criterion and safety assessment approach to tubular joints. Engineering Structures 22, 424–434.

DOI: 10.1016/s0141-0296(98)00134-5

Google Scholar

[3] C. Chen, O. Kolednik, J. Heerens, F. Fischer (2005). Three-dimensional modeling of ductile crack growth: Cohesive zone parameters and crack tip triaxiality. Engineering Fracture Mechanics 72, 2072-2094.

DOI: 10.1016/j.engfracmech.2005.01.008

Google Scholar

[4] M. Anvari, I. Scheider, C. Thaulow C (2006). Simulation of dynamic ductile crack growth using strain-rate and triaxiality-dependent cohesive elements. Engineering Fracture Mechanics 73, 2210–2228.

DOI: 10.1016/j.engfracmech.2006.03.016

Google Scholar

[5] Y. Kim, J. Kim, S. Cho (2004). 3-D constraint effects on J testing and crack tip constraint in M(T), SE(B), SE(T) and C(T) specimens: numerical study. Engineering Fracture Mechanics 71, 1203-1218.

DOI: 10.1016/s0013-7944(03)00211-x

Google Scholar

[6] G. Mirone (2007). Role of stress triaxiality in elastoplastic characterization and ductile failure prediction. Engineering Fracture Mechanics 74, 1203-1221.

DOI: 10.1016/j.engfracmech.2006.08.002

Google Scholar

[7] B. Macdonald, J. Pajot J (1990). Stress intensity factors for side-grooved fracture specimens. Journal of Testing and Evaluation 18, 281-285.

DOI: 10.1520/jte12485j

Google Scholar

[8] A. Bakker (1992). Three-dimensional constraint effects on stress intensity distributions in plate geometries with through-thickness cracks. Fatigue and Fracture of Engineering Materials and Structures 15, 1051-1069.

DOI: 10.1111/j.1460-2695.1992.tb00032.x

Google Scholar

[9] A. Kotousov, C. Wang (2002). Three dimensional stress constraint in an elastic plate with a notch. International Journal of Solids and Structures 39, 4311-4326.

DOI: 10.1016/s0020-7683(02)00340-2

Google Scholar

[10] F. Berto, P. Lazzarin, C. Wang (2004) Three-dimensional linear elastic distributions of stress and strain energy density ahead of V-shaped notched in plates of arbitrary thickness. International Journal of Fracture 127, 265-282.

DOI: 10.1023/b:frac.0000036846.23180.4d

Google Scholar

[11] A. Kotousov, P. Lazzarin, F. Berto, S. Hardinga (2010). Effect of the thickness on elastic deformation and quasi-brittle fracture of plate components. Engineering Fracture Mechanics 77, 1665-1681.

DOI: 10.1016/j.engfracmech.2010.04.008

Google Scholar

[12] R. Branco, J. Silva, V. Infante, F.V. Antunes, F. Ferreira (2010). Using a standard specimen for crack propagation under plain strain conditions. International Journal of Structural Integrity 1, 332-343.

DOI: 10.1108/17579861011099169

Google Scholar

[13] W. Burton, G. Sinclair, J. Solecki, J. Swedlow (1984). On the implications for LEFM of the three-dimensional aspects in some crack/surface intersection problems. International Journal of Fracture 25, 3-32.

DOI: 10.1007/bf01152747

Google Scholar

[14] K. Narayana, B. Dattaguru, T. Ramamurthy, K. Vijayakumar (1994). A general procedure for modified crack closure integral in 3D problems with cracks. Engineering Fracture Mechanics 48, 167-176.

DOI: 10.1016/0013-7944(94)90076-0

Google Scholar

[15] F. Antunes, J. Ferreira, C. Branco, J. Byrne (2000). Stress intensity factor solutions for corner cracks under mode I loading. Fatigue and Fracture of Engineering Materials and Structures 23, 81-90.

DOI: 10.1046/j.1460-2695.2000.00215.x

Google Scholar

[16] D. Camas , J. Garcia, A. Gonzalez (2011). Numerical study of the thickness transition in-bi-dimensional specimen cracks. International Journal of Fatigue 33, 921-928.

DOI: 10.1016/j.ijfatigue.2011.02.006

Google Scholar

[17] D. Camas , J. Garcia, A. Gonzalez (2012). Crack front curvature: Influence and effects on the crack tip fields in bi-dimensional specimens. International Journal of Fatigue 44, 41-50.

DOI: 10.1016/j.ijfatigue.2012.05.012

Google Scholar

[18] M. Gilchrist, R. Smith (1991). Finite element modelling of fatigue crack shapes. Fatigue and Fracture of Engineering Materials and Structures 6, 617-626.

DOI: 10.1111/j.1460-2695.1991.tb00691.x

Google Scholar

[19] A. Carpinteri (1992). Elliptical-arc surface cracks in round bars. Fatigue and Fracture of Engineering Materials and Structures 15, 1141-1153.

DOI: 10.1111/j.1460-2695.1992.tb00039.x

Google Scholar

[20] T. Nykänen (1996). Fatigue crack growth simulations based on free front shape development. Fatigue and Fracture of Engineering Materials and Structures 19, 99-109.

DOI: 10.1111/j.1460-2695.1996.tb00935.x

Google Scholar

[21] X. Lin, R. Smith (1999). Finite element modelling of fatigue crack growth of surface cracked plates. Part I: The numerical technique. Engineering Fracture Mechanics 63, 503-522.

DOI: 10.1016/s0013-7944(99)00040-5

Google Scholar

[22] F. Antunes, J. Ferreira, J. Costa, C. Capela (2002). Fatigue life predictions in polymer particle composites. International Journal of Fatigue 24, 1095-1105.

DOI: 10.1016/s0142-1123(02)00016-6

Google Scholar

[23] W. Lee, J. Lee (2004). Successive 3D analysis technique for characterization of fatigue crack growth behaviour in composite-repaired aluminum plate. Composite Structures 66, 513-520.

DOI: 10.1016/j.compstruct.2004.04.074

Google Scholar

[24] C. Gardin, S. Courtin, G. Bézine, D. Bertheau, H. Hamouda (2007). Numerical simulation of fatigue crack propagation in compressive residual stress fields of notched round bars, Fatigue and Fracture of Engineering Materials and Structures 30, 231-242.

DOI: 10.1111/j.1460-2695.2007.01101.x

Google Scholar

[25] R. Branco, F.V. Antunes (2008). Finite element modelling and analysis of crack shape evolution in mode-I fatigue middle-cracked tension specimens. Engineering Fracture Mechanics 75, 3020-337.

DOI: 10.1016/j.engfracmech.2007.12.012

Google Scholar

[26] R. Branco, F.V. Antunes, J.D. Costa (2012). Lynx: A user-friendly computer application for simulating fatigue growth of planar cracks using FEM. Computer Applications in Engineering Education.

DOI: 10.1002/cae.20578

Google Scholar

[27] R. Branco, F.V. Antunes, R. Martins (2008). Modelling fatigue crack propagation in CT specimens, Fatigue and Fracture of Engineering Materials and Structures 31, 452-465.

DOI: 10.1111/j.1460-2695.2008.01241.x

Google Scholar

[28] R. Branco, F.V. Antunes, J.D. Costa (2012). Determination of the Paris law constants in round bars from beach marks on fracture surfaces. Engineering Fracture Mechanics 96, 96-106.

DOI: 10.1016/j.engfracmech.2012.07.009

Google Scholar

[29] R. Branco, F.V. Antunes, D. Rodrigues (2008). Influence of through-thickness crack shape on plasticity induced crack closure. Fatigue and Fracture of Engineering Materials and Structures 31, 209-220.

DOI: 10.1111/j.1460-2695.2008.01216.x

Google Scholar

[30] R. Branco, F.V. Antunes, J. Ferreira, J. Silva (2009). Determination of Paris Law constants with a reverse engineering technique, Engineering Failure Analysis 16, 631-638.

DOI: 10.1016/j.engfailanal.2008.02.004

Google Scholar