Cadmium Sulfide and Zinc Sulfide Nanostructures Formed by Electrophoretic Deposition

Article Preview

Abstract:

Cadmium sulfide (CdS) and zinc sulfide (ZnS) nanostructures were formed by means of electrophoretic deposition of nanoparticles with mean diameter of 6 nm and 20 nm, respectively. Nanoparticles were prepared by a microwave assisted synthesis in aqueous dispersion and electrophoretically deposited on aluminum plates. CdS thin films and ZnS one-dimensional nanostructures were grown on the negative electrodes after 24 hours of electrophoretic deposition at direct current voltage. CdS and ZnS nanostructures were characterized by means of scanning electron (SEM) and atomic force (AFM) microscopies analysis. CdS thin films homogeneity can be tunable varying the strength of the applied electric field. Deposition at low electric field produces thin films with particles aggregates, whereas deposition at relative high electric field produces smoothed thin films. The one-dimensional nanostructure size can be also controlled by the electric field strength. Two different mechanisms are considered in order to describe the formation of the nanostructures: lyosphere distortion and thinning and subsequent dipole-dipole interactions phenomena are proposed as a possible mechanism of the one-dimensional nanostructures, and a mechanism considering pre-deposition interactions of the CdS nanoparticles is proposed for the CdS thin films formation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-105

Citation:

Online since:

March 2012

Export:

Price:

[1] T. Trindade, P. O'Brien, N.L. Pickett, Nanocrystalline Semiconductors: Synthesis, Properties and Perspectives, Chemistry of Materials. 13 (2001) 3843-3858.

DOI: 10.1021/cm000843p

Google Scholar

[2] J. -U. Kim, Y. -S. Kim, H. Yang, Nanocrystalline Y3Al5O12: Ce phosphor-based white light-emitting diodes embedded with CdS: Mn/ZnS core/shell quantum dots, Materials Letters. 63 (2009) 614-616.

DOI: 10.1016/j.matlet.2008.12.001

Google Scholar

[3] M. Feng, Y. Chen, L. Gu, N. He, J. Bai, Y. Lin, et al., CdS nanoparticles chemically modified PAN functional materials: Preparation and nonlinear optical properties, European Polymer Journal. 45 (2009) 1058-1064.

DOI: 10.1016/j.eurpolymj.2008.12.016

Google Scholar

[4] Q. Zhao, Y. Xie, Z. Zhang, X. Bai, Size-selective Synthesis of Zinc Sulfide Hierarchical Structures and Their Photocatalytic Activity, Crystal Growth & Design. 7 (2007) 153-158.

DOI: 10.1021/cg060521j

Google Scholar

[5] M.L. Breen, a D. Dinsmore, R.H. Pink, S.B. Qadri, B.R. Ratna, Sonochemically Produced ZnS-Coated Polystyrene Core−Shell Particles for Use in Photonic Crystals, Langmuir. 17 (2001) 903-907.

DOI: 10.1021/la0011578

Google Scholar

[6] Y. He, H. -F. Wang, X. -P. Yan, Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids., Analytical Chemistry. 80 (2008) 3832-7.

DOI: 10.1021/ac800100y

Google Scholar

[7] Y. Li, X. Li, C. Yang, Y. Li, Ligand-Controlling Synthesis and Ordered Assembly of ZnS Nanorods and Nanodots, The Journal of Physical Chemistry B. 108 (2004) 16002-16011.

DOI: 10.1021/jp0489018

Google Scholar

[8] S.V. Pol, V.G. Pol, J.M. Calderon-Moreno, S. Cheylan, A. Gedanken, Facile synthesis of photoluminescent ZnS and ZnSe nanopowders., Langmuir : The ACS Journal of Surfaces and Colloids. 24 (2008) 10462-6.

DOI: 10.1021/la800921a

Google Scholar

[9] S. Kar, S. Santra, H. Heinrich, Fabrication of High Aspect Ratio Core-Shell CdS-Mn/ZnS Nanowires by a Two Step Solvothermal Process, Journal of Physical Chemistry C. 112 (2008) 4036-4041.

DOI: 10.1021/jp800277x

Google Scholar

[10] A.L. Washington, G.F. Strouse, Microwave Synthetic Route for Highly Emissive TOP/TOP-S Passivated CdS Quantum Dots, Chemistry of Materials. 21 (2009) 3586-3592.

DOI: 10.1021/cm900624z

Google Scholar

[11] K.J. Rao, B. Vaidhyanathan, M. Ganguli, P. a Ramakrishnan, Synthesis of Inorganic Solids Using Microwaves, Chemistry of Materials. 11 (1999) 882-895.

DOI: 10.1021/cm9803859

Google Scholar

[12] X.T. Zhang, Z. Liu, Q. Li, S.K. Hark, Growth and luminescence of ternary semiconductor ZnCdSe nanowires by metalorganic chemical vapor deposition., The Journal of Physical Chemistry. B. 109 (2005) 17913-6.

DOI: 10.1021/jp0527406

Google Scholar

[13] N. Badera, B. Godbole, S.B. Srivastava, P.N. Vishwakarma, L.S.S. Chandra, D. Jain, et al., Quenching of photoconductivity in Fe doped CdS thin films prepared by spray pyrolysis technique, Applied Surface Science. 254 (2008) 7042-7048.

DOI: 10.1016/j.apsusc.2008.05.218

Google Scholar

[14] S. a Fortuna, X. Li, Metal-catalyzed semiconductor nanowires: a review on the control of growth directions, Semiconductor Science and Technology. 25 (2010) 024005.

DOI: 10.1088/0268-1242/25/2/024005

Google Scholar

[15] S. -T. Ho, K. -C. Chen, H. -A. Chen, H. -Y. Lin, C. -Y. Cheng, H. -N. Lin, Catalyst-Free Surface-Roughness-Assisted Growth of Large-Scale Vertically Aligned Zinc Oxide Nanowires by Thermal Evaporation, Chemistry of Materials. 19 (2007) 4083-4086.

DOI: 10.1021/cm070474y

Google Scholar

[16] A.R. Boccaccini, J.A. Roether, B.J.C. Thomas, M.S.P. Shaffer, E. Chavez, E. Stoll, et al., The electrophoretic Deposition of Inorganic Nanoscaled Materials, Journal Of The Ceramic Society Of Japan. 14 (2006) 1-14.

DOI: 10.2109/jcersj.114.1

Google Scholar

[17] L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Progress in Materials Science. 52 (2007) 1-61.

DOI: 10.1016/j.pmatsci.2006.07.001

Google Scholar

[18] I. Corni, M. Ryan, a Boccaccini, Electrophoretic deposition: From traditional ceramics to nanotechnology, Journal of the European Ceramic Society. 28 (2008) 1353-1367.

DOI: 10.1016/j.jeurceramsoc.2007.12.011

Google Scholar

[19] A. R. Boccaccini, S. Keim, R. Ma, Y. Li, I. Zhitomirsky, Electrophoretic deposition of biomaterials., Journal of the Royal Society, Interface / the Royal Society. (2010).

DOI: 10.1098/rsif.2010.0156.focus

Google Scholar

[20] T. Serrano, I. Gómez, R. Colás, J. Cavazos, Synthesis of CdS nanocrystals stabilized with sodium citrate, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 338 (2009) 20-24.

DOI: 10.1016/j.colsurfa.2008.12.017

Google Scholar

[21] A. Vazquez, I. Gomez, J.A. Garib, B.I. Kharisov, Influence of Precursor and Power Irradiation on the Microwave-Assisted Synthesis of ZnS Nanoparticles, Synthesis and Ractivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 39 (2009).

DOI: 10.1080/15533170902772883

Google Scholar

[22] P. Sarkar, P.S. Nicholson, Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics, Journal of the American Ceramic Society. 79 (1996) 1987-(2002).

DOI: 10.1111/j.1151-2916.1996.tb08929.x

Google Scholar

[23] A. Vázquez, I. López, I. Gómez, Growth of one-dimensional zinc sulfide nanostructures through electrophoretic deposition, Materials Letters. 65 (2011) 2422-2425.

DOI: 10.1016/j.matlet.2011.04.107

Google Scholar