New Ti-Alloy with Negative and Zero Thermal Expansion Coefficients

Article Preview

Abstract:

Most materials expand upon heating due to the anharmonicity of the atomic potential energy. This thermal expansion is one of the intrinsic properties of any material which is very difficult to be controlled. Recently, a negative thermal expansion factor was introduced to those Ti-alloys with high elastic softening when cold deformed. This negative thermal expansion factor is changeable in these types of alloys depending on the alloy composition, degree of cold deformation, and thermal history of the alloy. This change gives a lot of room to control the coefficient of thermal expansion (CTE) of those Ti-alloys to turn from positive though zero to negative values and vice versa. In this paper, the appearance of the NTE factor is discussed and the possible methods to control the final thermal expansion coefficient to achieve a zero thermal expansion coefficient are presented. The unique thermal expansion behavior of the alloys will locate them as an excellent candidate in sensing apparatus and other precious equipments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-66

Citation:

Online since:

November 2011

Export:

Price:

[1] C.E. Guillaume: Recherches Metrologiques sur les Aciers au Nickel (Dunod: Paris, 1928).

Google Scholar

[2] Y. Nakamura: Physics and Engineering Applications of Invar Alloys (Maruzen, Tokyo, 1978).

Google Scholar

[3] V. M. Cosmaa, M. Lozovanb, H. Chiriacb and C. G. Haba: Sensors and Actuators A: Physical (1997), p.128.

Google Scholar

[4] M. Jhabvala, D. Reuter, K. Choi, C. Jhabvala, M. Sundaram: Infrared Physics & Technology, Vol. 52 (2009), p.424.

DOI: 10.1016/j.infrared.2009.05.027

Google Scholar

[5] Yu-Jung Hsu, Yen-Hwei Chang, Yin-Lai Chai, Guo-Ju Chen; Sensors and Actuators A: Physical, Vol. 101 (2002), p.160.

Google Scholar

[6] L. M. Valiev, I. G. karimove, N. G. Aliev, and A. A. Abdurragimov: Phys. Stat. Sol. A 35 (1976), K85.

Google Scholar

[7] K. Fukamichi, and H. Saito: J. Japan Inst. Metals 40 (1976), p.22.

Google Scholar

[8] J. J. Wang, T. Omori, Y. Sutou, R. Kainuma, and K. Ishida: Scripta Mater. 52 (2005), p.311.

Google Scholar

[9] Y. Zhenga, J. Lia, and L. Cui: Mater. Sci. Eng. A 438-440 (2006), p.567.

Google Scholar

[10] M. Abdel-Hady, M. Morinaga: Scripta Mater: 61 (2009), p.825.

Google Scholar

[11] M. Abdel-Hady, K. Henoshita, M. Morinaga: Scripta Mater. 55 (2006), p.477.

Google Scholar

[12] M. Abdel-Hady, H. Fuwa, K. Henoshita, and M. Morinaga: Mater. Sci. Eng. A 480 (2008), p.167.

Google Scholar

[13] M. Abdel-Hady, M. Morinaga: Int. J. Modern Phy. B 236 (2009), p.1559.

Google Scholar

[14] M. Abdel-Hady, M. Niinomi, M. Nakai, and M. Morinaga: Physica Status Solidi B (2011), in press.

Google Scholar

[15] T. Furuta, S. Kuramoto, J. Hwang, K. Nishino, T. Saito: Mater. Trans. 46–12 (2005), p.3001.

Google Scholar

[16] M.Y. Gutkin, T. Ishizaki, S. Kuramoto, I.A. Ovid'ko: Acta Mater. 54 (2006), p.2489.

Google Scholar