Size Dependence of Optical Properties in Semiconductor Nanocrystals

Article Preview

Abstract:

An extension of the classic thermodynamic theory to nanometer scale has generated a new interdisciplinary theory - nanothermodynamics. It is the critical tool for the investigation of the size-dependent physicochemical properties in nanocrystals. A simple and unified nanothermodynamic model for the melting temperature of nanocrystals has been established based on Lindemann’s criterion for the melting, Mott’s expression for the vibrational melting entropy, and Shi’s model for the size dependence of the melting point. The developed model has been extensively verified in calculating a variety of size- and dimensionality-dependent phase transition functions of nanocrystals. In this work, such a model was extended to explain the underlying mechanism behind the bandgap energy enhancement and Raman red shifts in semiconductor nanocrystals by (1) investigating the crystal size r, dimensionality d, and constituent stoichiometry x dependences of bandgap energies Eg in semiconductor quantum dots (QDs) and quantum wires (QWs); and (2) revealing the origin of size effect on the Raman red shifts in low dimensional semiconductors by considering the thermal vibration of atoms. For Eg, it is found that: (1) Eg increases with a decreasing r for groups IV, III-V and II-VI semiconductors and the quantum confinement effect is pronounced when r becomes comparable to the exciton radius; (2) the ratio of Eg(r, d)QWs/Eg(r, d)QDs is size-dependent, where Eg(r, d) denotes the change in bandgap energy; (3) the crystallographic structure (i.e. zinc-blende and wurtzite) effect on Eg of III-V and II-VI semiconductor nanocrystals is limited; and (4) for both bulk and nanosized III-V and II-VI semiconductor alloys, the composition effects on Eg are substantial, having a common nonlinear (bowing) relationship. For the Raman red shifts, the lower limit of vibrational frequency was obtained by matching the calculation results of the shifts with the experimental data of Si, InP, CdSe, CdS0.65Se0.35, ZnO, CeO2, as well as SnO2 nanocrystals. It shows that: (1) the Raman frequency (r) decreases as r decreases in both narrow and wide bandgap semiconductors; (2) with the same r, the sequence of size effects on (r) from strong to weak is nanoparticles, nanowires, and thin films; and (3) the Raman red shift is caused by the size-induced phonon confinement effect and surface relaxation. These results are consistent with experimental findings and may provide new insights into the size, dimensionality, and composition effects on the optical properties of semiconductors as well as fundamental understanding of high-performance nanostructural semiconductors towards their applications in optoelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-162

Citation:

Online since:

July 2010

Authors:

Export:

Price:

[1] H. Gleiter: Acta Mater. Vol. 48 (2000), p.1.

Google Scholar

[2] Q. Jiang and C.C. Yang: Curr. Nanosci. Vol. 4 (2008), p.179.

Google Scholar

[3] C.Q. Sun: Prog. Solid State Chem. Vol. 35 (2007), p.1.

Google Scholar

[4] A.D. Yoffe: Adv. Phys. Vol. 50 (2001), p.1.

Google Scholar

[5] J.B. Li and L.W. Wang: Phys. Rev. B Vol. 72 (2005), p.125325.

Google Scholar

[6] C.C. Yang and S. Li: J. Phys. Chem. C Vol. 112 (2008), p.2851.

Google Scholar

[7] H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki and T. Nakagiri: Appl. Phys. Lett. Vol. 56 (1990), p.2379.

Google Scholar

[8] L. Pavesi, G. Giebel, F. Ziglio, G. Mariotto, F. Priolo, S.U. Campisano and C. Spinella: Appl. Phys. Lett. Vol. 65 (1994), p.2182.

DOI: 10.1063/1.112755

Google Scholar

[9] T. van Buuren, L.N. Dinh, L.L. Chase, W.J. Siekhaus and L.J. Terminello: Phys. Rev. Lett. Vol. 80 (1998), p.3803.

DOI: 10.1103/physrevlett.80.3803

Google Scholar

[10] L.K. Pan, C.Q. Sun, B.K. Tay, T.P. Chen and S. Li: J. Phys. Chem. B Vol. 106 (2002), p.11725.

Google Scholar

[11] Y.G. Cao, X.L. Chen, J.Y. Li, Y.C. Lan and J.K. Liang: Appl. Phys. A Vol. 71 (2000), p.229.

Google Scholar

[12] R. Viswanatha, S. Sapra, T. Saha-Dasgupta and D.D. Sarma: Phys. Rev. B Vol. 72 (2005), p.045333.

Google Scholar

[13] S.M. Gao, J. Lu, N. Chen, Y. Zhao and Y. Xie: Chem. Commun. Vol. 2002 (2002), p.3064.

Google Scholar

[14] O.I. Mićić and A.J. Nozik: J. Lumin. Vol. 70 (1996), p.95.

Google Scholar

[15] S.S. Kher and R.L. Wells: Nanostruct. Mater. Vol. 7 (1996), p.591.

Google Scholar

[16] M.A. Malik, P. O'Brien, S. Norager and J. Smith: J. Mater. Chem. Vol. 13 (2003), p.2591.

Google Scholar

[17] J.P. Xiao, Y. Xie, R. Tang and W. Luo: Inorg. Chem. Vol. 42 (2003), p.107.

Google Scholar

[18] O.I. Mićić, S.P. Ahrenkiel and A.J. Nozik: Appl. Phys. Lett. Vol. 78 (2001), p.4022.

Google Scholar

[19] D.V. Talapin, S.K. Poznyak, N.P. Gaponik, A.L. Rogach and A. Eychmüller: Physica E Vol. 14 (2002), p.237.

Google Scholar

[20] H. Yu, J.B. Li, R.A. Loomis, L.W. Wang and W.E. Buhro: Nature Mater. Vol. 2 (2003), p.517.

Google Scholar

[21] A.A. Guzelian, U. Banin, A.V. Kadavanich, X. Peng and A.P. Alivisatos: Appl. Phys. Lett. Vol. 69 (1996), p.1432.

Google Scholar

[22] M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss and A.P. Alivisatos: Science Vol. 281 (1998), p. (2013).

Google Scholar

[23] U. Banin, C.J. Lee, A.A. Guzelian, A.V. Kadavanich, A.P. Alivisatos, W. Jaskolski, G.W. Bryant, A.L. Efros and M. Rosen: J. Chem. Phys. Vol. 109 (1998), p.2306.

DOI: 10.1063/1.476797

Google Scholar

[24] U. Banin, Y.W. Cao, D. Katz and O. Millo: Nature Vol. 400 (1999), p.542.

Google Scholar

[25] S.H. Kan, T. Mokari, E. Rothenberg and U. Banin: Nature Mater. Vol. 2 (2003), 155.

Google Scholar

[26] R. Rossetti, R. Hull, J.M. Gibson and L.E. Brus: J. Chem. Phys. Vol. 82 (1985), p.552.

Google Scholar

[27] S. Yanagida, T. Yoshiya, T. Shiragami and C. Pac: J. Phys. Chem. Vol. 94 (1990), p.3104.

Google Scholar

[28] H. Inoue, N. Ichiroku, T. Torimoto, T. Sakata, H. Mori and H. Yoneyama: Langmuir Vol. 10 (1994), p.4517.

DOI: 10.1021/la00024a022

Google Scholar

[29] Y. Nakaoka and Y. Nosaka: Langmuir Vol. 13 (1997), p.708.

Google Scholar

[30] J. Nanda, S. Sapra, D.D. Sarma, N. Chandrasekharan and G. Hodes: Chem. Mater. Vol. 12 (2000), p.1018.

Google Scholar

[31] M.A. Hines and P. Guyot-Sionnest: J. Phys. Chem. B Vol. 102 (1998), p.3655.

Google Scholar

[32] F.T. Quinlan, J. Kuther, W. Tremel, W. Knoll, S. Risbud and P. Stroeve: Langmuir Vol. 16 (2000), p.4049.

DOI: 10.1021/la9909291

Google Scholar

[33] J. Mazher, A.K. Shrivastav, R.V. Nandedkar and R.K. Pandey: Nanotechnology Vol. 15 (2004), p.572.

Google Scholar

[34] Y. -W. Jun, C. -S. Choi and J. Cheon: Chem. Commun. Vol. 2001 (2001), p.101.

Google Scholar

[35] Y. Wang and N. Herron: Phys. Rev. B Vol. 42 (1990), p.7253.

Google Scholar

[36] D. -S. Chuu and C. -M. Dai: Phys. Rev. B Vol. 45 (1992), p.11805.

Google Scholar

[37] T. Vossmeyer, L. Katsikas, M. Giersig, I.G. Popovic, K. Diesner, A. Chemseddine, A. Eychmüller and H. Weller: J. Phys. Chem. Vol. 98 (1994), p.7665.

DOI: 10.1021/j100082a044

Google Scholar

[38] A. Tomasulo and M.V. Ramakrishna: J. Chem. Phys. Vol. 105 (1996), p.3612 and references therein.

Google Scholar

[39] J. Nanda, B.A. Kuruvilla and D.D. Sarma: Phys. Rev. B Vol. 59 (1999), p.7473.

Google Scholar

[40] T. Torimoto, H. Kontani, Y. Shibutani, S. Kuwabata, T. Sakata, H. Mori and H. Yoneyama: J. Phys. Chem. B Vol. 105 (2001), p.6838.

DOI: 10.1021/jp0109271

Google Scholar

[41] C.N.R. Rao, G.U. Kulkarni, P.J. Thomas and P.P. Edwards: Chem. Eur. J. Vol. 8 (2002), p.29.

Google Scholar

[42] C.Q. Sun, S. Li, B.K. Tay and T.P. Chen: Acta Mater. Vol. 50 (2002), p.4687 and references therein.

Google Scholar

[43] B.O. Dabbousi, C.B. Murray, M.F. Rubner and M.G. Bawendi: Chem. Mater. Vol. 6 (1994), p.216.

Google Scholar

[44] A.L. Rogach, A. Kornowski, M. Gao, A. Eychmüller and H. Weller: J. Phys. Chem. B Vol. 103 (1999), p.3065.

Google Scholar

[45] S. Gorer and G. Hodes: J. Phys. Chem. Vol. 98 (1994), p.5338.

Google Scholar

[46] L.S. Li, J.T. Hu, W.D. Yang and A.P. Alivisatos: Nano. Lett. Vol. 1 (2001), p.349.

Google Scholar

[47] H. Yu, J.B. Li, R.A. Loomis, P.C. Gibbons, L.W. Wang and W.E. Buhro: J. Am. Chem. Soc. Vol. 125 (2003), p.16168.

Google Scholar

[48] Y. Mastai and G. Hodes: J. Phys. Chem. B Vol. 101 (1997), p.2685.

Google Scholar

[49] Y. Masumoto and K. Sonobe: Phys. Rev. B Vol. 56 (1997), p.9734.

Google Scholar

[50] L.A. Swafford, L.A. Weigand, M.J. Bowers II, J.R. McBride, J.L. Rapaport, T.L. Watt, S.K. Dixit, L.C. Feldman and S.J. Rosenthal: J. Am. Chem. Soc. Vol. 128 (2006), p.12299.

DOI: 10.1021/ja063939e

Google Scholar

[51] S.C. Ray, M.K. Karanjai and D. DasGupta: Thin Solid Films Vol. 322 (1998), p.117.

Google Scholar

[52] A.H. Ammar: Vacuum Vol. 60 (2001), p.355.

Google Scholar

[53] X.H. Zhong, Y.Y. Feng, W. Knoll and M.Y. Han: J. Am. Chem. Soc. Vol. 125 (2003), p.13559.

Google Scholar

[54] J.R. Müllhäuser, B. Jenichen, M. Wassermeier, O. Brandt and K.H. Ploog: Appl. Phys. Lett. Vol. 71 (1997), p.909.

DOI: 10.1063/1.119685

Google Scholar

[55] R. Goldhahn, J. Scheiner, S. Shokhovets, T. Frey, U. Köhler, D.J. As and K. Lischka: Appl. Phys. Lett. Vol. 76 (2000), p.291.

DOI: 10.1063/1.125725

Google Scholar

[56] X.L. Sun, Y.T. Wang, H. Yang, L.X. Zheng, D.P. Xu, J.B. Li and Z.G. Wang: J. Appl. Phys. Vol. 87 (2000), p.3711.

Google Scholar

[57] Y.S. Park, B.R. Hwang, J.C. Lee, H. Im, H.Y. Cho, T.W. Kang, J.H. Na and C.M. Park: Nanotechnology Vol. 17, (2006), p.4640.

Google Scholar

[58] J. Kamimura, T. Kouno, S. Ishizawa, A. Kikuchi and K. Kishino: J. Cryst. Growth Vol. 300, (2007), p.160.

Google Scholar

[59] D. Barreca, A. Gasparotto, C. Maragno, E. Tondello and C. Sada: Chem. Vap. Deposition Vol. 10 (2004), p.229.

DOI: 10.1002/cvde.200306292

Google Scholar

[60] X.H. Zhong, M.Y. Han, Z.L. Dong, T.J. White and W. Knoll: J. Am. Chem. Soc. Vol. 125 (2003), p.8589.

Google Scholar

[61] J. P. Ge, S. Xu, J. Zhuang, X. Wang, Q. Peng and Y. D. Li: Inorg. Chem. Vol. 45 (2006), p.4922.

Google Scholar

[62] Al.L. Efros and A.L. Efros: Sov. Phys. Semicond. Vol. 16 (1982), p.772.

Google Scholar

[63] J.E. Brus: J. Lumin. Vol. 31 (1984), p.381.

Google Scholar

[64] Y. Kayanuma: Phys. Rev. B Vol. 38 (1988), p.9797.

Google Scholar

[65] Y.D. Glinka, S.H. Lin, L.P. Hwang, Y.T. Chen and N.H. Tolk: Phys. Rev. B Vol. 64 (2001), p.085421.

Google Scholar

[66] G.G. Qin, H.Z. Song, B.R. Zhang, J. Lin, J.Q. Duan and G.Q. Yao: Phys. Rev. B Vol. 54 (1996), p.2548.

Google Scholar

[67] X. Wang, L. Qu, J. Zhang, X. Peng and M. Xiao: Nano Lett. Vol. 3 (2003), p.1103.

Google Scholar

[68] F. Koch, V. Petrova-Koch, T. Muschik, A. Nikolov, V. Gavrilenko: Microcrystalline Semiconductors: Materials Science and Devices (Vol. 283, Pittsburgh, PA: Materials Research Society 1993, p.197).

Google Scholar

[69] T.S. Iwayama, D.E. Hole and I.W. Boyd: J. Phys.: Condens. Matter Vol. 11 (1999), p.6595.

Google Scholar

[70] N.P. Gurusinghe, N.N. Hewa-Kasakarage and M. Zamkov: J. Phys. Chem. C Vol. 112 (2008), p.12795.

Google Scholar

[71] Z. Deng, F.L. Lie, S. Shen, I. Ghosh, M. Mansuripur and A.J. Muscat: Langmuir Vol. 25 (2009), p.434.

Google Scholar

[72] Y.F. Zhu, X.Y. Lang and Q. Jiang: Adv. Funct. Mater. Vol. 18 (2008), p.1422.

Google Scholar

[73] Y. Wang, G. Ouyang, L.L. Wang, L.M. Tang, D.S. Tang and C.Q. Sun: Chem. Phys. Lett. Vol. 463 (2008), p.383.

Google Scholar

[74] G. Guisbiers, G. Abudukelimu, M. Wautelet and L. Buchaillot: J. Phys. Chem. C Vol. 112 (2008), p.17889.

DOI: 10.1021/jp805760h

Google Scholar

[75] C.C. Yang and S. Li: J. Phys. Chem. B Vol. 112 (2008), p.14193.

Google Scholar

[76] P.M. Fauchet and I.H. Campbell: Crit. Rev. Solid State Mater. Sci. Vol. 14 (1988), p. S79.

Google Scholar

[77] W.Z. Wang and L. Ao: Cryst. Growth Des. Vol. 8 (2008), p.358.

Google Scholar

[78] Z. Iqbal and S. Vepřek: J. Phys. C: Solid State Phys. Vol. 15 (1982), p.377.

Google Scholar

[79] G. -X. Cheng, H. Xia, K. -J. Chen, W. Zhang and X. -K. Zhang: Phys. Status Solidi A Vol. 118 (1990), p. K51.

Google Scholar

[80] C. Ossadnik, S. Vepřek and I. Gregora: Thin Solid Films Vol. 337 (1999), p.148.

DOI: 10.1016/s0040-6090(98)01175-4

Google Scholar

[81] M. J. Seong, O.I. Mićić, A.J. Nozik, A. Mascarenhas and H.M. Cheong: Appl. Phys. Lett. Vol. 82 (2003), p.185.

Google Scholar

[82] A. Tanaka, S. Onari and T. Arai: Phys. Rev. B Vol. 45 (1992), p.6587.

Google Scholar

[83] P. Verma, L. Gupta, S.C. Abbi and K.P. Jain: J. Appl. Phys. Vol. 88 (2000), p.4109.

Google Scholar

[84] H. -M. Cheng, K. -F. Lin, H. -C. Hsu, C. -J. Lin, L. -J. Lin and W. -F. Hsieh: J. Phys. Chem. B Vol. 109 (2005), p.18385.

Google Scholar

[85] J.E. Spanier, R.D. Robinson, F. Zhang, S. -W. Chan and I.P. Herman: Phys. Rev. B Vol. 64 (2001), p.245407.

Google Scholar

[86] C.H. Shek, G.M. Lin and J.K.L. Lai: Nanostruct. Mater. Vol. 11 (1999), p.831.

Google Scholar

[87] A. Diéguez, A. Romano-Rodríguez, A. Vilà and J.R. Morante: J. Appl. Phys. Vol. 90 (2001), p.1550.

Google Scholar

[88] J.K. Jian, X.L. Chen, Q.Y. Tu, Y.P. Xu, L. Dai and M. Zhao: J. Phys. Chem. B Vol. 108 (2004), p.12024.

Google Scholar

[89] C.C. Chen, R.S. Chen, T.Y. Tsai, Y.S. Huang, D.S. Tsai and K.K. Tiong: J. Phys.: Condens. Matter Vol. 16 (2004), p.8475.

Google Scholar

[90] D.F. Zhang, L.D. Sun and C.H. Yan: Chem. Phys. Lett. Vol. 422 (2006), p.46.

Google Scholar

[91] Y.Q. Chen, B. Peng and B. Wang: J. Phys. Chem. C Vol. 111 (2007), p.5855.

Google Scholar

[92] D. Wang, J. Zhao, B. Chen and C. Zhu: J. Phys.: Condens. Matter Vol. 20 (2008), p.085212.

Google Scholar

[93] A.K. Sood, K. Jayaram and D.V.S. Muthu: J. Appl. Phys. Vol. 72 (1992), p.4963.

Google Scholar

[94] J. Zi, H. Büscher, C. Falter, W. Ludwig, K.M. Zhang and X.D. Xie: Appl. Phys. Lett. Vol. 69 (1996), p.200.

DOI: 10.1063/1.117371

Google Scholar

[95] G. Viera, S. Huet and L. Boufendi: J. Appl. Phys. Vol. 90 (2001), p.4175.

Google Scholar

[96] W. Cheng and S. -F. Ren: Phys. Rev. B Vol. 65 (2002), p.205305.

Google Scholar

[97] H. Richter, Z.P. Wang and L. Ley: Solid State Commun. Vol. 39 (1981), p.625.

Google Scholar

[98] I.H. Campbell and P.M. Fauchet: Solid State Commun. Vol. 58 (1986), p.739.

Google Scholar

[99] E. Anastassakis and E. Liarokapis: J. Appl. Phys. Vol. 62 (1987), p.3346.

Google Scholar

[100] C.C. Yang and S. Li: Phys. Rev. B Vol. 75 (2007), p.165413.

Google Scholar

[101] F.G. Shi: J. Mater. Res. Vol. 9 (1994), p.1307.

Google Scholar

[102] Q. Jiang, H.X. Shi and M. Zhao: J. Chem. Phys. Vol. 111 (1999), p.2176.

Google Scholar

[103] F.A. Lindemann: Z. Phys. Vol. 11 (1910), p.609.

Google Scholar

[104] C.C. Yang and S. Li: J. Phys. Chem. C Vol. 112 (2008), p.1423.

Google Scholar

[105] N.F. Mott: Proc. R. Soc. A Vol. 146 (1934), p.465.

Google Scholar

[106] A.R. Regel' and V.M. Glazov: Semiconductors Vol. 29 (1995), p.405.

Google Scholar

[107] C.C. Yang and S. Li: J. Phys. Chem. C Vol. 113 (2009), p.14207.

Google Scholar

[108] C.C. Yang and S. Li: J. Phys. Chem. B Vol. 112 (2008), p.1482.

Google Scholar

[109] C.C. Yang and Q. Jiang: Mater. Sci. Eng. B Vol. 131 (2006), p.191.

Google Scholar

[110] T.G. Fox: Bull. Am. Phys. Soc. Vol. 1 (1956), p.123.

Google Scholar

[111] D.J. Gillespie: Phys. Rev. B Vol. 14 (1976), p.4021.

Google Scholar

[112] B.L. Wang, S.Y. Yin, G.H. Wang, A. Buldum and J.J. Zhao: Phys. Rev. Lett. Vol. 86 (2001), p. (2046).

Google Scholar

[113] J.X. Fang, H.J. You, P. Kong, B.J. Ding and X.P. Song: Appl. Phys. Lett. Vol. 92 (2008), p.143111.

Google Scholar

[114] Information on http: /www. webelements. com/ Web Elements Periodic Table.

Google Scholar

[115] R.C. Weast: CRC Handbook of Chemistry and Physics (69th ed., CRC Press: Boca Raton, FL, 1988-1989, pp. B188 and E112).

Google Scholar

[116] S. Sapra and D.D. Sarma: Phys. Rev. B Vol. 69 (2004), p.125304.

Google Scholar

[117] Information on http: /www. semiconductors. co. uk/ The Semiconductors Information Website.

Google Scholar

[118] I. Vurgaftman, J.R. Meyer and L.R. Ram-Mohan: J. Appl. Phys. Vol. 89 (2001), p.5815.

Google Scholar

[119] Information on http: /www. ioffe. ru/SVA/NSM/Semicond/ Semiconductors on NSM.

Google Scholar

[120] C.C. Yang, S. Li and J. Armellin: J. Phys. Chem. C Vol. 111 (2007), p.17512.

Google Scholar

[121] R. Venugopal, P. Lin and Y. -T. Chen: J. Phys. Chem. B Vol. 110 (2006), p.11691.

Google Scholar

[122] R. Hill and D. Richardson: J. Phys. C: Solid State Phys. Vol. 6 (1973), p. L115.

Google Scholar

[123] J. Haines and J.M. Léger, Phys. Rev. B Vol. 55 (1997), p.11144.

Google Scholar

[124] D.R. Lide: CRC Handbook of Chemistry and Physics (88th ed., CRC Press/Taylor and Francis, Boca Raton, FL, Internet Version 2008, pp.6-115, 6-111, 6-114, 4-158 and 4-162).

DOI: 10.1021/ja077011d

Google Scholar

[125] O. Gülseren, F. Ercolessi and E. Tosatti: Phys. Rev. Lett. Vol. 80 (1998), p.3775.

Google Scholar

[126] S. Iijima: Nature Vol. 354 (1991), p.56.

Google Scholar

[127] Y. Kondo and K. Takayanagi: Science Vol. 289 (2000), p.606.

Google Scholar

[128] K. -M. Ho, A.A. Shvartsburg, B. Pan, Z. -Y. Lu, C. -Z. Wang, J. G. Wacker, J.L. Fye and M.F. Jarrold: Nature Vol. 392 (1998), p.582.

DOI: 10.1038/33369

Google Scholar

[129] G. Seifert: Nature Mater. Vol. 3 (2004), p.77.

Google Scholar

[130] A. Kasuya, R. Sivamohan, Y.A. Barnakov, I.M. Dmitruk, T. Nirasawa, V.R. Romanyuk, V. Kumar, S.V. Mamykin, K. Tohji, B. Jeyadevan, K. Shinoda, T. Kudo, O. Terasaki, Z. Liu, R.V. Belosludov, V. Sundararajan and Y. Kawazoe: Nature Mater. Vol. 3 (2004).

DOI: 10.1038/nmat1056

Google Scholar

[131] S. Yoo, J. Zhao, J. Wang and X.C. Zeng: J. Am. Chem. Soc. Vol. 126 (2004), p.13845.

Google Scholar

[132] P. Gruene, D.M. Rayner, B. Redlich, A.F.G. van der Meer, J.T. Lyon, G. Meijer and A. Fielicke: Science Vol. 321 (2008), 674.

DOI: 10.1126/science.1161166

Google Scholar

[133] S.A. Claridge, A.W. Castleman Jr., S.N. Khanna, C.B. Murray, A. Sen and P.S. Weiss: ACS Nano Vol. 3 (2009), p.244.

Google Scholar