Preparation of Spherical Spinel LiMn2O4 Cathode Material for Lithium Ion Batteries

Article Preview

Abstract:

A novel process was proposed for preparing spinel LiMn2O4 with spherical particles from cheap materials of MnSO4, NaOH, NH3•H2O and LiOH. Its successful preparation started with a carefully controlled crystallization of Mn3O4, leading to the spherical shape of its particles and a high tap density. The mixture of Mn3O4 and LiOH was sintered to produce LiMn2O4 with spherical particle size retention. The spherical particles of spinel LiMn2O4 were of excellent fluidity and dispersivity, and had tap density as high as 2.14 g cm-3 and the initial discharge capacity reaching 128 mAh g-1. Its 15th cycle capacity kept to be 125 mAh g-1.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 336-338)

Pages:

477-480

Citation:

Online since:

April 2007

Export:

Price:

[1] J. C. Hunter: J. Solid State Chem. Vol. 39 (1981), p.142.

Google Scholar

[2] J.M. Tarascon, W.R. McKinnon, F. Coowar, T.N. Bowmer, G. Amatucci and D. Guyomard: J. Electrochem. Soc. Vol. 141 (1994), p.1421.

DOI: 10.1149/1.2054941

Google Scholar

[3] M.M. Thackeray, Y. Shao-Horn, A.J. Kahaian, K.D. Kepler, E. Skinner, J.T. Vaughey and S.A. Hackney: Electrochem. Solid-State Lett. Vol. 1 (1998), p.7.

Google Scholar

[4] N.V. Kosova, E.T. Devyatkina and S.G. Kozlova: J. Power Sources Vol. 97-98 (2001), p.406.

Google Scholar

[5] S. Soiron, A. Rougier, L. Aymard and J.M. Tarascon: J. Power Sources Vol. 97-98 (2001), p.402.

DOI: 10.1016/s0378-7753(01)00522-5

Google Scholar

[6] N.V. Kosova, N.F. Uvarov, E.T. Devyatkina and E.G. Avvakumov: Solid State Ionics Vol. 135 (2000), p.107.

Google Scholar

[7] S. Bach, J.P. Pereira-Ramos, N. Baffier and R. Messina: Electrochimica Acta Vol. 37 (1992), p.1301.

DOI: 10.1016/0013-4686(92)85071-r

Google Scholar

[8] P. Barboux, F. K. Shokoohi and J.M. Tarascon, US patent 5135732, (1992).

Google Scholar

[9] X.P. Qiu, X.G. Sun, W.C. Shen and N.P. Chen: Solid State Ionics Vol. 93 (1997), p.335.

Google Scholar

[10] E. Levi, M.D. Levi, G. Salitra, D. Aurbach, R. Oesten, U. Heider and L. Heider: Solid State Ionics Vol. 126 (1999), p.109.

DOI: 10.1016/s0167-2738(99)00219-2

Google Scholar

[11] D. Aurbach, M.D. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L. Heider and R. Oesten: J. Power Sources Vol. 81-82 (1999), p.472.

DOI: 10.1016/s0378-7753(99)00204-9

Google Scholar

[12] I. Taniguchi, C. K. Lim, D. Song, M. Wakihara: Solid State Ionics Vol. 146 (2002), p.239.

Google Scholar

[13] Taniguchi: Materials Chem. Phys. Vol. 92 (2005), p.172.

Google Scholar

[14] Z. Bakenov, I. Taniguchi: Solid State Ionics Vol. 176 (2005), p.1027.

Google Scholar

[15] S. -H. Park, S. -W. Oh, S. -T. Myung, Y.C. Kang, Y. -K. Sun: Solid State Ionics Vol. 176 (2005), p.481.

Google Scholar

[16] C.Y. Jiang, C.R. Wan, Q.R. Zhang, J.J. Zhang: Chinese J. Power Sources Vol. 21 (1997), p.243.

Google Scholar

[17] C.Y. Jiang, Q.R. Zhang, X.H. Du, C.R. Wan: Chinese J. Power Sources Vol. 24 (2000), p.207.

Google Scholar

[18] J.R. Ying, C.Y. Jiang, C.R. Wan: J. Power Sources Vol. 129 (2004), p.264.

Google Scholar

[19] J.R. Ying, C.Y. Jiang, C.R. Wan: J. Power Sources Vol. 99 (2001), p.78.

Google Scholar

[20] X.H. Du, C.Y. Jiang, C.R. Wan: J. Tsinghua Uni. (Sci. Tech. ) Vol. 41 (2001), p.71.

Google Scholar

[21] C.R. Wan, C.Y. Jiang: J. Tsinghua Uni. (Sci. Tech. ) Vol. 38 (1998), p.95.

Google Scholar