Structural Examination of Multilayer CrAlSiN/AlSiN Coatings Deposited by Cathodic Arc

Article Preview

Abstract:

In this research, the possibility of applying multilayer multielement super hard coatings by Cathodic Arc is investigated. More precisely the structure of the coating consisting of quaternary CrAlSiN and ternary AlSiN layers is examined by electron microscopy, X-ray diffraction and X-ray photoelectron microscopy analytical methods. The as-deposited samples were found to have distinguishable layers. The CrAlSiN layer is characterized by an extra sequence of repeated nanolayers. The AlSiN layer consisted of nanosized grains having a preferential orientation. Finally the surface layer was found to contain a solid solution of CrxAl1-xN, while Si3N4was identified only by XPS most probably due to its amorphous structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-70

Citation:

Online since:

July 2017

Export:

Price:

* - Corresponding Author

[1] Y. H. Yoo, D. P. Le, J. G. Kim, S. K. Kim, P. V. Vinh, Corrosion behavior of TiN, TiAlN, TiAlSiN thin films deposited on tool steel in the 3. 5 wt. % NaCl solution, Thin Solid Films, 516 (2008) 3544–3548.

DOI: 10.1016/j.tsf.2007.08.069

Google Scholar

[2] J. Vetter, Vacuum arc coatings for tools: potential and application, Surf. Coat. Technol., 76-77 (PART 2) (1995) 719-724.

DOI: 10.1016/02578-9729(50)24999-

Google Scholar

[3] P. Patsalas, C. Charitidis, S. Logothetidis, The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films, Surf. Coat. Technol., 125 (1-3) (2000) 335-340.

DOI: 10.1016/s0257-8972(99)00606-4

Google Scholar

[4] K. Sarakinos, S. Kassavetis, P. Patsalas, S. Logothetidis, Structural factors determining the nanomechanical performance of transition metal nitride films, Materials Research Society Symposium Proceedings, 843 art. no. T7. 8 (2005) 311-316.

DOI: 10.1557/proc-843-t7.8

Google Scholar

[5] P. W. Shum, Y. F. Xu, Z. F. Zhou, K. Y. Li, Effects of carbon and nitrogen ion implantations on surface and tribological properties of Ti-Al-Si-N coatings, Surf. Eng., 28(2) (2012) 149-154.

DOI: 10.1179/1743294411y.0000000071

Google Scholar

[6] B. Warcholinski, A. Gilewicz, Mechanical properties of multilayer TiAlN/CrN coatings deposited by cathodic arc evaporation, Surf. Eng. 27(7) (2011) 291-297.

DOI: 10.1179/026708410x12786785573355

Google Scholar

[7] Y-Y. Chang, C-P. Chang, D-Y. Wang, S-M. Yang, W. Wu, High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process J. Alloy Compd., 461 (2008) 336–341.

DOI: 10.1016/j.jallcom.2007.06.084

Google Scholar

[8] C. Y. Yu, S. B. Wang, T. B. Li Z. X. Zhang, Tribological behavior of CrAlN coatings at 600°C, Surf. Eng. 29(4) 2013 318-321.

Google Scholar

[9] S. Carvalho, F. Vaz, L. Rebouta, D. Schneider, A. Cavaleiro, E. Alves, Elastic properties of (Ti, Al, Si)N nanocomposite films, Surf. Coat. Technol., 142-144 (2001) 110-116.

DOI: 10.1016/s0257-8972(01)01242-7

Google Scholar

[10] S. Veprek, M. G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, Different approaches to superhard coatings and nanocomposites, Thin Solid Films, 476(1) (2005) 1-29.

DOI: 10.1016/j.tsf.2004.10.053

Google Scholar

[11] D. Chaliampalias, N. Pliatsikas, E. Pavlidou, K. Kolaklieva, R. Kakanakov, N. Vouroutzis, P. Patsalas, E. K. Polychroniadis, K. Chrissafis, G. Vourlias, Compositionally gradient PVD CrAlSiN films, structural examination and oxidation resistance, Surf. Eng., (in press), doi: 10. 1080/02670844. 2016. 1187789.

DOI: 10.1080/02670844.2016.1187789

Google Scholar

[12] J. Musil, Hard nanocomposite coatings, Thermal stability, oxidation resistance and toughness, Surf. Coat. Technol., 207 (2012) 50-65.

DOI: 10.1016/j.surfcoat.2012.05.073

Google Scholar

[13] P. Hobular, M. Jilek and M. Sima, Present and possible future applications of superhard nanocomposite coatings, Surf. Coat. Technol., 133-134 (2000) 145-151.

DOI: 10.1016/s0257-8972(00)00956-7

Google Scholar

[14] Y.H. Cheng,T. Browne, B. Heckerman, E.I. Meletis, Mechanical and tribological properties of nanocomposite TiSiN coatings, Surf. Coat. Technol., 204(14) (2010) 2123-2129.

DOI: 10.1016/j.surfcoat.2009.11.034

Google Scholar

[15] Y.H. Cheng, T. Browne, B. Heckerman, C. Bowman, V. Gorokhovsky, E.I. Meletis, Mechanical and tribological properties of TiN/Ti multilayer coating, Surf. Coat. Technol., 205(1) (2010) 146-151.

DOI: 10.1016/j.surfcoat.2010.06.023

Google Scholar

[16] Y. X. Wang, S. Zhang, J-W Lee, W. S. Lew, D. Sun, B. Li, Toward hard yet tough CrAlSiN coatings via compositional grading, Surf. Coat. Technol., 231 (2013) 346–352.

DOI: 10.1016/j.surfcoat.2012.03.036

Google Scholar

[17] S. Zhang, L. Wang, Q. Wang, M. Li, A superhard CrAlSiN superlattice coating deposited by multi-arc ion plating, I. Microstructure and mechanical properties, Surf. Coat. Technol., 214 (2013) 160–167.

DOI: 10.1016/j.surfcoat.2012.05.144

Google Scholar

[18] M. Stuber, V. Schier, Properties and performance of new metastable Ti-B-C-N hard coatings prepared by magnetron sputtering, Surf. Coat. Technol., 74-75 (1995) 833-837.

DOI: 10.1016/0257-8972(95)08281-6

Google Scholar

[19] H. Holleck, V. Schier, Multilayer PVD coatings for wear protection, Surf. Coat. Technol., 76-77 (1995) 328-336.

DOI: 10.1016/0257-8972(95)02555-3

Google Scholar

[20] http, /www. platit. com/p.80.

Google Scholar

[21] PC Powder Diffraction Files, JCPDS-ICDD, (2003).

Google Scholar

[22] J.L. Endrino, S. Palacı, M.H. Aguirre, A. Gutierrez, F. Schafers, Determination of the local environment of silicon and the microstructure of quaternary CrAl(Si)N films, ActaMaterialia, 55 (2007) 2129–2135.

DOI: 10.1016/j.actamat.2006.11.014

Google Scholar

[23] S. K. Kim, V.V. Le, P.V. Vinh, J. W. Lee, , Effect of cathode arc current and bias voltage on the mechanical properties of CrAlSiN thin films, Surf. Coat. Technol., 202 (2008) 5400–5404.

DOI: 10.1016/j.surfcoat.2008.06.019

Google Scholar

[24] I-W Park, D. S. Kang, J.J. Moore, S.C. Kwon, J.J. Rha, K.H. Kim, Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N, and Cr–Al–Si–N coatings by a hybrid coating system, Surf. Coat. Technol., 201 (9-11) (2007).

DOI: 10.1016/j.surfcoat.2006.07.118

Google Scholar

[25] D. Chaliampalias, N. Pliatsikas, E. Pavlidou, L. Kolaklieva, R. Kakanakov, N. Vouroutzis, P. Patsalas, E.K. Polychroniadis, K. Chrissafis, G. Vourlias, Compositionally gradient PVD CrAlSiN films: structural examination and oxidation resistance, Surf. Eng., 2016 1-7 (in press).

DOI: 10.1080/02670844.2016.1187789

Google Scholar

[26] D. Rafaja, M. Dopita, M. Růžička, V. Klemm, D. Heger, G. Schreiber, M. Šíma, Microstructure development in Cr–Al–Si–N nanocomposites deposited by cathodic arc evaporation, Surf. Coat. Technol., 201 (6) (2006) 2835-2843.

DOI: 10.1016/j.surfcoat.2006.05.033

Google Scholar

[27] A.O. Eriksson, J.Q. Zhu, N. Ghafoor, M.P. Johansson , J. Sjölen, J. Jensen, M. Odén,L. Hultman, J. Rosén, Layer formation by resputtering in Ti–Si–C hard coatings during large scale cathodic arc deposition, Surf. Coat. Technol., 205 (2011).

DOI: 10.1016/j.surfcoat.2011.02.007

Google Scholar

[28] I. Zhirkov, E. Oks, J. Rosen, Effect of N2 and Ar gas on DC arc plasma generation and film composition from Ti-Al compound cathodes, J. Appl. Phys., 117 (2015) 213301.

DOI: 10.1063/1.4921952

Google Scholar

[29] L. Rogström, M. P. Johansson, N. Ghafoor, L. Hultman, M. Odén, Influence of chemical composition and deposition conditions on microstructure evolution during annealing of arc evaporated ZrAlN thin films, J. Vac, Sci. Tecnol., 30 (2012) 031504.

DOI: 10.1116/1.3698592

Google Scholar

[30] H. Holleck, V. Schier, Multilayer PVD coatings for wear protection, Surf. Coat. Technol., 76–77 (1995) 328-336.

DOI: 10.1016/0257-8972(95)02555-3

Google Scholar

[31] S.H. Sheng, R.F. Zhang, S. Vepřek, Decomposition mechanism of Al1−xSixNy solid solution and possible mechanism of the formation of covalent nanocrystalline AlN/Si3N4 nanocomposites, Acta Materialia, 61 (11) (2013) 4226-4236.

DOI: 10.1016/j.actamat.2013.03.048

Google Scholar

[32] Trang T. Nguyen, Thao T. Nguyen, G.T. Nguyen, V.V. Le, Effect of the Si content on structure and mechanical properties in Al1-xSixN materials, Vacuum, 129 (2016) 1-8.

DOI: 10.1016/j.vacuum.2016.04.006

Google Scholar

[33] S. Zhang, L. Wang, Q. Wang, M. Li, A superhard CrAlSiN superlattice coating deposited by multi-arc ion plating, I. Microstructure and mechanical properties, Surf. Coat. Technol., 214 (2013) 160-167.

DOI: 10.1016/j.surfcoat.2012.05.144

Google Scholar

[34] P. Ren, S. Zhu, F. Wang, Characterization and oxidation behavior of a sputtered nanocomposite Ni+CrAlYSiHfN coating, Corrosion, 71(4) (2015) 523-535.

DOI: 10.5006/1492

Google Scholar

[35] H.C. Barshilia, B. Deepthi, K.S. Rajam, Deposition and characterization of CrN/Si3N4 and CrAlN/Si3N4 nanocomposite coatings prepared using reactive DC unbalanced magnetron sputtering, Surf. Coat. Technol., 201(24) (2007) 9468-9475.

DOI: 10.1016/j.surfcoat.2007.04.002

Google Scholar

[36] T. Polcar, A. Cavaleiro, High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings - Structure and oxidation, Mater. Chem. Phys., 129(1-2) (2011) 196-201.

DOI: 10.1016/j.matchemphys.2011.03.078

Google Scholar

[37] D.B. Lee, T.D. Nguyen, S.K. Kim, Air-oxidation of nano-multilayered CrAlSiN thin films between 800 and 1000 °C, Surf. Coat. Technol., 203(9) 2009 1199-1204.

DOI: 10.1016/j.surfcoat.2008.10.011

Google Scholar

[38] J. Laube, S. Gutsch, D. Hiller, M. Bruns, C. Kübel, C. Weiss, M. Zacharias, Formation of size controlled silicon nanocrystals in nitrogen free silicon dioxide matrix prepared by plasma enhanced chemical vapor deposition, J. Appl. Phys., 116 (22) (2014).

DOI: 10.1063/1.4904053

Google Scholar