Blue-Shift of Ultraviolet Luminescence in Rough Surfaced ZnO Nanotubes Embedded in the AAO Template

Article Preview

Abstract:

Polycrystal ZnO nanotube arrays with outer diameter about 46 – 70 nm have been fabricated by annealing zinc oxalate in the pores of anodic aluminum oxide (AAO) template. Each nanotube is made up of small nanoparticles with the average size of 4 –7 nm. The nanotubes embedded in the pores of AAO template constitute to a kind of quantum wells arranged alternatively by ZnO, Al2O3 and thin air layer. Rough surfaced structure increases the interactions between these layers, and enhances the quantum confinement effect. Similar to the ZnO/Al2O3 multiply layer structure, a strong near-band edge emission at about 336 nm is observed under the excitation of 220 nm. The blue shift of the near band transition originates from the raises of the Fermi level of ZnO nanotubes generated by the addition of donor Al3+. With the decrease of wall thickness, this ultraviolet peak becomes broad and stronger. Under the excitation of 380 nm, a main emission platform from 430 nm to 530 nm appears originated from the transition from conduction band tails to valence band tails contain a complex mechanical strains effected by many crystal defect. The higher energy emission properties may have potential applications for the ultraviolet light-emitting diodes and laser diodes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-184

Citation:

Online since:

January 2017

Export:

Price:

* - Corresponding Author

[1] L. Li, S. S. Pan, X. X. Dou, Y. G. Zhu, X. H. Huang, Y. W. Yang, G. H. Li, L. D. Zhang, Direct electrodeposition of ZnO nanotube arrays in anodic alumina membranes, J. Phys. Chem. C 111(2007) 7288 -7291.

DOI: 10.1021/jp0711242

Google Scholar

[2] M. Purica, E. Budianu, E. Ruso, E. Heterojunction with ZnO polycrystalline thin films for optoelectronic devices applications, Microelectron. Eng. 51-52 (2000) 425-431.

DOI: 10.1016/s0167-9317(99)00492-x

Google Scholar

[3] M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, G. Kiriakidis, ZnO transparent thin films for gas sensor applications, Thin Solid Films 515 (2006) 551-554.

DOI: 10.1016/j.tsf.2005.12.295

Google Scholar

[4] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films, Appl. Phys. Lett. 72 (1998) 3270-3272.

DOI: 10.1063/1.121620

Google Scholar

[5] D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, W. C. Harsch, Valence-band ordering in ZnO, Phys. Rev. B 60 (1999) 2340-2344.

DOI: 10.1103/physrevb.60.2340

Google Scholar

[6] S. Y. Myong, K. Sriprapha, S. Miyajima, M. Konagai, A. Yamada, High efficiency protocrystalline silicon/microcrystalline silicon tandem cell with zinc oxide intermediate layer, Appl. Phys. Lett. 90 (2007) 263509.

DOI: 10.1063/1.2752736

Google Scholar

[7] C. C. Wu, D. S. Wuu, P. R. Lin, T. N. Chen, R. H. Horng, Three-step growth of well-aligned ZnO nanotube arrays by self-catalyzed metalorganic chemical vapor deposition method, Cryst. Growth Des. 9 (2009) 4555- 4561.

DOI: 10.1021/cg900557n

Google Scholar

[8] Y. Xia, W. Z. Wu, H. Fang, C. G. Hu, Integrated ZnO nanotube arrays as efficient dye-sensitized solar cells, J. Alloys Compd. 529 (2012) 163-168.

DOI: 10.1016/j.jallcom.2012.02.183

Google Scholar

[9] Q. J. Yu, W. Y. Fu, C. L. Yu, H. B. Yang, Fabrication and optical properties of large-scale ZnO nanotube bundles via a simple solution route, J. Phys. Chem. C 111 (2007) 17521-17526.

DOI: 10.1021/jp076159g

Google Scholar

[10] L. Yang, Y. H. Tang, X. H. Chen, Y. Li, X. L. Cao, Synthesis of Eu3+ doped Y2O3 nanotube arrays throughan electric field-assisted deposition method, Mater. Chem. Phys. 101 (2007) 195-198.

DOI: 10.1016/j.matchemphys.2006.03.006

Google Scholar

[11] L. Yang, Y. J. She, S. H. Zhao, S. H. Yue, Q. Wang, A. P. Hu, W. Zhang, Synthesis and optical properties modulation of ZnO/Eu2O3 nanocable Arrays, J. Appl. Phys. 108 (2010) 104301.

DOI: 10.1063/1.3509148

Google Scholar

[12] S. Agarwala, G. W. Ho, Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell, J. Solid State Chem. 189 (2012) 101-107.

DOI: 10.1016/j.jssc.2011.11.047

Google Scholar

[13] D. F Liu, W. Wu, Y. F. Qiu, S. H. Yang, S. Xiao, Q. Q. Wang, L. Ding, J. Wang, Surface functionalization of ZnO nanotetrapods with photoactive and electroactive organic monolayers, Langmuir 24 (2008) 5052-5059.

DOI: 10.1021/la800074f

Google Scholar

[14] S. Mallakpour, M. Madan, Use of silane coupling agent for surface modification of zinc oxide as inorganic filler and preparation of poly(amide–imide)/zinc oxide nanocomposite containing phenylalanine moieties, Bull. Mater. Sci. 35 (2012) 333-339.

DOI: 10.1007/s12034-012-0304-8

Google Scholar

[15] S. H. Zhao, L. Yang, L. L. Wang, B. B. Yu, Y. X. Chen, Y. T. Cui, Synthesis and luminescence properties of ZnO: Eu3+ nanowire arrays via electrodeposited method, Func. Mater. Lett. 3 (2010) 285-288.

DOI: 10.1142/s1793604710001482

Google Scholar

[16] S. H. Zhao, L. L. Wang, L. Yang, Z. Y. Wang, Synthesis and luminescence properties of ZnO: Tb3+ nanotube arrays via electrodeposited method, Physica B, 405 (2010) 3200-3204.

DOI: 10.1016/j.physb.2010.04.049

Google Scholar

[17] S. F. Wang, J. M. Zhang, L. Y. Chen, K. W. Xu, Influences of Cd-substitution and intrinsic vacancies on the electronic structures and optical properties of ZnO nanotubes, J. Supercond. Nov. Magn. 25 (2012) 2457-2463.

DOI: 10.1007/s10948-012-1667-1

Google Scholar

[18] F. Keller, H. K. Hunter, D. L. Robinson, Structural features of oxide coatings on aluminum, J. Electrochem. Soc. 100 (1953) 411-419.

DOI: 10.1149/1.2781142

Google Scholar

[19] S. H. Zhao, L. L. Wang, L. Yang and Y. X. Chen, Synthesis and ultraviolet luminescence properties of half-wall Al2O3 nanotube arrays, J. Phys. D: Appl. Phys. 42 (2009) 225106.

DOI: 10.1088/0022-3727/42/22/225106

Google Scholar

[20] C. Cheng, M. lei, L. Feng, T. L. Wong, K. M. Ho, K. K. Fung, M. M. T. Loy, D. P. Yu, N. Wang, High-quality ZnO nanowire arrays directly from photoresists, ACS Nano 3 (2009) 53-58.

DOI: 10.1021/nn800527m

Google Scholar

[21] X. M. Wen, J. A. Davis, L. V. Dao, P. Hannaford, V. A. Coleman, H. H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, M. Yano, Temperature dependent photoluminescence in oxygen ion implanted and rapid thermally annealed ZnO/ZnMgO multiple quantum wells, Appl. Phys. Lett. 90 (2007).

DOI: 10.1063/1.2745264

Google Scholar

[22] Parag Banerjee, Won-Jae Lee, Ki-Ryeol Bae, Sang Bok Lee, Gary W. Rubloff, Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films, J. Appl. Phys. 108 (2010) 043504.

DOI: 10.1063/1.3466987

Google Scholar

[23] G. D. Wilk, R. M. Wallace, and J. M. Anthony, High-κ gate dielectrics: Current status and materials properties considerations, J. Appl. Phys. 89 (2001) 5243.

DOI: 10.1063/1.1361065

Google Scholar

[24] H. J. Ko, M. S. Han, Y. S. Park, Y. S. Yu, B. I. Kim, S. S. Kim, J. H. Kim, Improvement of the quality of ZnO substrates by annealing, J. Cryst. Growth 269 (2004) 493-498.

DOI: 10.1016/j.jcrysgro.2004.05.096

Google Scholar

[25] K. Ogata, K. Sakurai, S. Fujita, S. Fujita and K. Matsushige, Effects of thermal annealing of ZnO layers grown by MBE, J. Cryst. Growth 214-215 (2000) 312-315.

DOI: 10.1016/s0022-0248(00)00099-3

Google Scholar

[26] Z. B. Fang, Y. Y. Wang, X. P. Peng, X. Q. Liu, C. M. Zhen, Structural and optical properties of ZnO films grown on the AAO templates, Mater. Lett. 57 (2003) 4187-4190.

DOI: 10.1016/s0167-577x(03)00287-8

Google Scholar

[27] L. Yang, J. Z. Dong, Y. J. She, Z. C. Jiang, L. D. Zhang, H. B. Yu, Self-purification construction of interstitial O in the neighbor of Eu3+ ions to act as energy transfer bridge, Appl. Phys. Lett. 104 (2014) 033109.

DOI: 10.1063/1.4863083

Google Scholar

[28] S. A. Studenikin, N. Golego, M. Cocivera, Fabrication of green and orange photoluminescent undoped ZnO films using spray pyrolysis, J. Appl. Phys. 83 (1998) 2287 - 2294.

DOI: 10.1063/1.368295

Google Scholar

[29] U. Manzoor and D. K. Kim, Size control of ZnO nanostructures formed in different temperature zones by varying Ar flow rate with tunable optical properties, Physica E 41 (2009) 500-505.

DOI: 10.1016/j.physe.2008.09.012

Google Scholar