Electrochemical Ultra-Low Detection of Isoniazid Using a Salicylaldamine Functionalised G1-DAB-(NH2)4 Dendritic Sensor vs. UV-VIS Spectrophotometric Detection

Article Preview

Abstract:

A poly(propyleneimine) based dendrimer was synthesised and successfully functionalised with a copper centre within its branches. The dendrimer and corresponding metallodendrimer were successfully characterised using FTIR, HR-TEM and HR-SEM in order to determine the effect of the inclusion of copper into the dendritic structure. The incorporation of copper caused crystallinity as revealed in the HR-TEM and a sheet-like morphology as shown in the HR-SEM images. The resulting metallodendrimer was then applied as an electrocatalytic platform for the sensing of a first line TB drug called isoniazid. This method was compared to a routine laboratory detection using UV-Vis and was found to be much more sensitive to trace amounts of isoniazid in solution. The electrochemical detection was found to have a limit of detection (LOD) of 0.233 nM compared to 11.47 nM using the Ultraviolet-visible spectroscopy method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

164-174

Citation:

Online since:

January 2017

Export:

Price:

* - Corresponding Author

[1] G. S. Timmins and V. Deretic, Mechanisms of action of isoniazid, Mol. Microbiol., vol. 62, no. 5, p.1220–1227, (2006).

DOI: 10.1111/j.1365-2958.2006.05467.x

Google Scholar

[2] F. G. Winder, P. Collins, and S. A. Rooney, Effects of isoniazid on mycolic acid synthesis in Mycobacterium tuberculosis and on its cell envelope., Biochem. J., vol. 117, no. 2, p. 27P, Apr. (1970).

DOI: 10.1042/bj1170027pa

Google Scholar

[3] D. A. Rozwarski, G. A. Grant, D. H. Barton, W. R. Jacobs, and J. C. Sacchettini, Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis., Science, vol. 279, no. 5347, p.98–102, Jan. (1998).

DOI: 10.1126/science.279.5347.98

Google Scholar

[4] WHO, Global tuberculosis report 2014 (WHO/HTM/TB/2014. 08), (2014).

Google Scholar

[5] A. C. Pettit, J. Bethel, Y. Hirsch-Moverman, P. W. Colson, and T. R. Sterling, Female sex and discontinuation of isoniazid due to adverse effects during the treatment of latent tuberculosis., J. Infect., vol. 67, no. 5, p.424–32, Nov. (2013).

DOI: 10.1016/j.jinf.2013.07.015

Google Scholar

[6] P. Prajapati and Y. K. Agrawal, SFC–MS/MS for identification and simultaneous estimation of the isoniazid and pyrazinamide in its dosage form, J. Supercrit. Fluids, vol. 95, p.597–602, Nov. (2014).

DOI: 10.1016/j.supflu.2014.09.012

Google Scholar

[7] X. Zhang, Y. Xuan, A. Sun, Y. Lv, and X. Hou, Simultaneous determination of isoniazid and p-aminosalicylic acid by capillary electrophoresis using chemiluminescence detection., Luminescence, vol. 24, no. 4, p.243–9, Jan.

DOI: 10.1002/bio.1107

Google Scholar

[8] A. M. el-Brashy and S. M. el-Ashry, Colorimetric and titrimetric assay of isoniazid., J. Pharm. Biomed. Anal., vol. 10, no. 6, p.421–6, Jun. (1992).

DOI: 10.1016/0731-7085(92)80060-z

Google Scholar

[9] M. F. Bergamini, D. P. Santos, and M. V. B. Zanoni, Electrochemical behavior and voltammetric determination of pyrazinamide using a poly-histidine modified electrode, J. Electroanal. Chem., vol. 690, p.47–52, Feb. (2013).

DOI: 10.1016/j.jelechem.2012.11.032

Google Scholar

[10] B. K. Jena and C. R. Raj, Au nanoparticle decorated silicate network for the amperometric sensing of isoniazid., Talanta, vol. 80, no. 5, p.1653–6, Mar. (2010).

DOI: 10.1016/j.talanta.2009.10.002

Google Scholar

[11] S. Mani, S. Cheemalapati, S. Chen, and B. Devadas, Anti-tuberculosis Drug Pyrazinamide Determination at Multiwalled Carbon Nanotubes / Graphene Oxide Hybrid Composite Fabricated Electrode, vol. 10, p.7049–7062, (2015).

DOI: 10.1016/s1452-3981(23)17329-9

Google Scholar

[12] D. A. Tomalia, A. M. Naylor, and W. A. Goddard, Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter, Angew. Chemie Int. Ed. English, vol. 29, no. 2, p.138–175, Feb. (1990).

DOI: 10.1002/anie.199001381

Google Scholar

[13] C. Rassie, R. a Olowu, T. T. Waryo, L. Wilson, A. Williams, P. G. Baker, and E. I. Iwuoha, Dendritic 7T-Polythiophene Electro-Catalytic Sensor System for the Determination of Polycyclic Aromatic Hydrocarbons, Int. J. Electrochem. Sci., vol. 6, p.1949 – 1967, (2011).

DOI: 10.1016/s1452-3981(23)18158-2

Google Scholar

[14] C. a. Nijhuis, B. a. Boukamp, B. J. Ravoo, J. Huskens, and D. N. Reinhoudt, Electrochemistry of ferrocenyl dendrimer - β-cyclodextrin assemblies at the interface of an aqueous solution and a molecular printboard, J. Phys. Chem. C, vol. 111, no. 27, p.9799–9810, (2007).

DOI: 10.1021/jp068853m

Google Scholar

[15] M. Jędrych, K. Borowska, R. Galus, and B. Jodłowska-Jędrych, The evaluation of the biomedical effectiveness of poly(amido)amine dendrimers generation 4. 0 as a drug and as drug carriers: a systematic review and meta-analysis., Int. J. Pharm., vol. 462, no. 1–2, p.38–43, Feb. (2014).

DOI: 10.1016/j.ijpharm.2013.12.033

Google Scholar

[16] R. G. Bellini, A. P. Guimarães, M. A. C. Pacheco, D. M. Dias, V. R. Furtado, R. B. de Alencastro, and B. A. C. Horta, Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer., J. Mol. Graph. Model., vol. 60, p.34–42, May (2015).

DOI: 10.1016/j.jmgm.2015.05.012

Google Scholar

[17] J. N. Mugo, S. F. Mapolie, and J. L. Van Wyk, Cu(II) and Ni(II) complexes based on monofunctional and dendrimeric pyrrole-imine ligands: Applications in catalytic liquid phase hydroxylation of phenol, Inorganica Chim. Acta, vol. 363, no. 11, p.2643–2651, (2010).

DOI: 10.1016/j.ica.2010.05.010

Google Scholar

[18] S. Achar, J. J. Vittal, and R. J. Puddephatt, Organoplatinum Dendrimers, Organometallics, vol. 15, no. 8, p.43–50, (1996).

DOI: 10.1021/om950413m

Google Scholar

[19] C. Rassie, J. Van Wyk, L. Wilson, H. R. Makelane, U. Feleni, U. Sidwaba, S. Mapolie, P. Baker, and E. Iwuoha, Microscopy and Electroanalysis of a First Generation Copper- poly ( propyleneimine ) Metallodendrimer System, Int. J. Electrochem. Sci., vol. 10, p.432–444, (2015).

DOI: 10.1016/s1452-3981(23)05003-4

Google Scholar

[20] M. A. Karimi, A. Hatefi-Mehrjardi, M. Mazloum-Ardakani, R. Behjatmanesh-Ardakani, M. H. Mashhadizadeh, and S. Sargazi, Study of electrocatalytic oxidation of isoniazid drug using Alizarin Red S as A mediator on the glassy carbon electrode, Int. J. Electrochem. Sci., vol. 5, no. 11, p.1634–1648, (2010).

DOI: 10.1016/s1452-3981(23)15418-6

Google Scholar

[21] Q. L. Zhao, Z. L. Zhang, L. Bao, and D. W. Pang, Surface structure-related electrochemical behaviors of glassy carbon electrodes, Electrochem. commun., vol. 10, no. 2, p.181–185, (2008).

DOI: 10.1016/j.elecom.2007.11.017

Google Scholar

[22] J. Martinovic, A. -M. Chiorcea-Paquim, V. C. Diculescu, J. Van Wyk, E. Iwuoha, P. Baker, S. Mapolie, and A. -M. Oliveira-Brett, Metallo-functionalized first-generation salicylaldimine poly(propylenimine) tetraamine dendrimers: Electrochemical study and atomic force microscopy imaging, Electrochim. Acta, vol. 53, no. 14, p.4907–4919, May (2008).

DOI: 10.1016/j.electacta.2008.02.013

Google Scholar

[23] K. R. Ward, N. S. Lawrence, R. S. Hartshorne, and R. G. Compton, Cyclic Voltammetry of the EC' Mechanism at Hemispherical Particles and Their Arrays: The Split Wave, J. Phys. Chem. C, vol. 115, no. 22, p.11204–11215, Jun. (2011).

DOI: 10.1021/jp2023204

Google Scholar

[24] S. Arifa Begum, D. Basava Raju, and N. Rama Rao, Simultaneous estimation of rifampicin and isoniazid in combined dosage form by a simple UV spectrophotometric method, Der Pharm. Lett., vol. 5, no. 3, p.419–426, (2013).

Google Scholar