Physical Insights on Charge Transport Mechanism and the LF Noise Behavior in Oxidized Si Structures with Ge Nanoclusters

Article Preview

Abstract:

To ascertain physical mechanism of charge transport in Si/SiOx structures with Ge nanoclusters the measurements of their DC and AC conductivity, and also the low-frequency measurements were performed. It was revealed that in the temperatures range 110 – 250 K the characteristics measured are governed by the hopping mechanism of charge transport. The model proposed suggests that the charge hopping becomes possible due to the band of localized states inducing in the bandgap of silicon substrate when Ge nanoclusters are introduced. The model was used to estimate some parameters of hopping transport. Also, the analysis of the low-frequency noise measured for Si/SiOx structures with Ge nanoclusters allowed to ascertain the mechanism of charge hopping resulting in strong temperature dependence of the 1/f noise measured.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-113

Citation:

Online since:

February 2016

Export:

Price:

* - Corresponding Author

[1] A. Shklyaev, M. Ichikawa, Three-dimensional Si islands on Si(001) surfaces, Phys. Rev. B 65 (2001) 045307-6.

DOI: 10.1103/physrevb.65.045307

Google Scholar

[2] V. Lysenko, Yu. Gomeniuk, Yu. Kozyrev, M. Rubezhanska, V. Sklyar, S. Kondratenko, Ye. Melnichuk, C. Teichert, Effect of Ge nanoislands on lateral photoconductivity of Ge-SiOx-Si structures, Advanced Materials Research 276 (2011) 179 – 186.

DOI: 10.4028/www.scientific.net/amr.276.179

Google Scholar

[3] N. Ledentsov, V. Ustinov, V. Shchukin, P. Kop'ev, Zh. Alferov, D. Bimberg, Quantum dot heterostructures: Fabrication, properties, lasers (Review), Semiconductors 32 (1998) 343 – 365.

DOI: 10.1134/1.1187396

Google Scholar

[4] D. Bimberg, M. Grundmann, N. Ledentsov, Quantum Dot Heterostructures, John Wiley & Sons, (1998).

Google Scholar

[5] A. Shklyaev, M. Ichikawa, Extremely dense arrays of germanium and silicon nanostructures, Physics-Uspekhi 51 (2008) 133 – 161.

Google Scholar

[6] V. Lysenko, S. Kondratenko, Yu. Kozyrev, M. Rubezhanska, V. Kladko, Yu. Gomeniuk, O. Gudymenko, Ye. Melnichuk, G. Grenet, N. Blanchard, Morphology and optical properties of tetragonal Ge nanoclusters grown on chemically oxidized Si(100) surfaces, Ukr. J. Phys. 57 (2012).

DOI: 10.1088/0268-1242/28/8/085009

Google Scholar

[7] N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon-Press, Oxford, (1971).

Google Scholar

[8] M. Pollak, T. H. Geballe, Low-frequency conductivity due to hopping processes in silicon, Phys. Rev. 122 (1961) 1742 – 1753.

DOI: 10.1103/physrev.122.1742

Google Scholar

[9] N. Garbar, V. Kudina, V. Lysenko, S. Kondratenko, Yu. Kozyrev, Effect of Ge-nanoislands on the low-frequency noise in Si/SiOx/Ge structures, Advanced Materials Research 854 (2014) 21 – 27.

DOI: 10.4028/www.scientific.net/amr.854.21

Google Scholar

[10] A.L. McWhorter, 1/f noise and related surface effects in germanium, Ph.D. dissertation, MIT, Cambridge, MA, (1955).

Google Scholar

[11] F.N. Hooge, 1/f noise sources, IEEE Trans. Electron Devices 41 (1994) 1926-(1935).

DOI: 10.1109/16.333808

Google Scholar

[12] D. McCammon, M. Galeazzi, D. Liu, W. Sanders, B. Smith, P. Tan, K. Boyce, R. Brekosky, J. Gygax, R. Kelley, D. Mott, F. Porter, C. Stahle, C. Stahle, A. Szymkowiak, 1/f noise and hot electron effects in variable range hopping conduction, Phys. Status Solidi B 230 (2002).

DOI: 10.1002/1521-3951(200203)230:1<1::aid-pssb1>3.0.co;2-z

Google Scholar

[13] S. Kar, A. K. Raychaudhuri, A. Ghosh, H. v. Lohneysen, G. Weiss, Observation of non-Gaussian conductance fluctuations at low temperatures in Si: P(B) at the metal-insulator transition, Phys. Rev. Lett. 91 (2003) 216603 – 4.

DOI: 10.1103/physrevlett.91.216603

Google Scholar

[14] N.F. Mott, Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1 – 17.

DOI: 10.1016/0022-3093(68)90002-1

Google Scholar

[15] B.I. Shklovskii and A.L. Efros, Electronic Properties of Doped Semiconductors, Springer-Verlag Berlin Heidelberg, (1984).

Google Scholar

[16] E. Kasper, K. Lyutovich, Properties of Silicon Germanium and SiGe: Carbon, Institution of Engineering & Technology, (1999).

Google Scholar

[17] T. Ando, A.B. Fowler, F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54 (1982) 437 – 672.

DOI: 10.1103/revmodphys.54.437

Google Scholar

[18] B.I. Shklovskii, 1/f noise in variable range hopping conduction, Phys. Rev. B 67 (2003) 045201 – 6.

Google Scholar

[19] V.I. Kozub, Low-frequency noise due to site energy fluctuations in hopping conductivity, Solid State Commun. 97 (1996) 843 – 846.

DOI: 10.1016/0038-1098(95)00621-4

Google Scholar

[20] J.G. Massey, M. Lee, Low-frequency noise probe of interacting charge dynamics in variable-range hopping boron-doped silicon, Phys. Rev. Lett. 79 (1997) 3986 – 3989.

DOI: 10.1103/physrevlett.79.3986

Google Scholar

[21] V. Pokrovskii, A. Savchenko, W. Tribe, E. Linfield, Modulation origin of 1/f noise in two-dimensional hopping, Phys. Rev. B 64 (2001) 201318 – 4.

Google Scholar

[22] B. I. Shklovskii, Theory of 1/f noise for hopping conduction, Solid State Commun. 33 (1980) 273 – 276.

DOI: 10.1016/0038-1098(80)91151-5

Google Scholar

[23] M. Pollak and Z. Ovadyahu, Non-ergodic Dynamics of an Electron Glass, J. Physique 7 (1997) 1595 – 1602.

DOI: 10.1051/jp1:1997157

Google Scholar

[24] A. Burin, B. Shklovskii, V. Kozub, Yu. Galperin, V Vinokur, Many electron theory of 1/f-noise in hopping conductivity, Phys. Stat. Sol. (c) 5 (2008) 800 – 808.

DOI: 10.1002/pssc.200777554

Google Scholar