Characterizations and Process Parameters of Titanium Dioxide Thin Film by RF Sputtering

Article Preview

Abstract:

In this study, we successfully combined RF magnetron sputtering of a pure Ti metal target and one-stage oxidation process with a wider oxygen ratio (10%-90%) and total sputtering flow rate (16-24 sccm) to produce TiO2 thin films on a glass substrate. The crystallization, morphology, roughness, and thickness of the thin films were examined using XRD, HR-FESEM, AFM, and a profilometer. Subsequently, the photocatalytic performance was examined using a spectrometer and video tensiometer. The experimental results show that the TiO2 thin films with a majority of anatase and higher roughness exhibit superior photocatalytic performance; the total sputtering gas flow rate of 18 sccm and oxygen content at 10% is the optimal option. Finally, an empirical formula to correlate the film thickness with deposition time was conducted for the sputtering flow rate of 18 sccm and the oxygen content of 10%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-21

Citation:

Online since:

May 2013

Export:

Price:

[1] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahenemann, Environmental application of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.

Google Scholar

[2] J.C. Yu, J. Yu, W. Ho, J. Zhao, Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films, J. Photochem. Photobiol. A: Chem. 148 (2002) 331–339.

DOI: 10.1016/s1010-6030(02)00060-6

Google Scholar

[3] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium oxide photoinduced reactivity of titanium oxide, Prog. Solid State Chem. 32 (2004) 33–177.

DOI: 10.1016/j.progsolidstchem.2004.08.001

Google Scholar

[4] S. Suárez, N. Arconada, Y. Castro, J.M. Coronado, R. Portela, A. Durán, B. Sánchez, Photocatalytic degradation of TCE in dry and wet air conditions with TiO2 porous thin films, Appl. Catal. B-Environ. 108– 109 (2011) 14– 21.

DOI: 10.1016/j.apcatb.2011.07.027

Google Scholar

[5] P. Evans, D.W. Sheel, Photoactive and antibacterial TiO2 thin films on stainless steel, Surf. Coat. Technol. 201 (2007) 9319–9324.

DOI: 10.1016/j.surfcoat.2007.04.013

Google Scholar

[6] S.H. Zhang, B.F. Hu, B. Xie, S.Y. Zhang, F.Y. Li, Preparation of titania film by pyrolysis of chelated tetrabutyl titanate, Key Eng. Mater. 368–372 (2008) 1468–1470.

DOI: 10.4028/www.scientific.net/kem.368-372.1468

Google Scholar

[7] T.P. Teng, T.C. Teng, C.C. Chen, The Fabrication of Nanophotocatalytic Film with Aqueous Titania Nanofluid by Electrophoretic Deposition, J. Nano Res. 10 (2010) 105-112.

DOI: 10.4028/www.scientific.net/jnanor.10.105

Google Scholar

[8] H. Ohsaki, Y. Tachibana, A. Hayashi, A. Mitsui, Y. Hayashi, High rate sputter deposition of TiO2 from TiO2-x target, Thin Solid Films 351 (1999) 57–60.

DOI: 10.1016/s0040-6090(99)00207-2

Google Scholar

[9] M. Yamagishia, S. Kurikib, P.K. Songa, Y. Shigesatoa, Thin film TiO2 photocatalyst deposited by reactive magnetron sputtering, Thin Solid Films 442 (2003) 227–231.

DOI: 10.1016/s0040-6090(03)00987-8

Google Scholar

[10] R. Dannenberg, P. Greene, Reactive sputter deposition of titanium dioxide, Thin Solid Films 360 (2000) 122–127.

DOI: 10.1016/s0040-6090(99)00938-4

Google Scholar

[11] H. Toku, R.S. Pessoa, H.S. Maciel, M. Massi, U.A. Mengui, The effect of oxygen concentration on the low temperature deposition of TiO2 thin films, Surf. Coat. Technol. 202 (2008) 2126–2131.

DOI: 10.1016/j.surfcoat.2007.08.075

Google Scholar

[12] J. Xiong, S.N. Das, S. Kim, J. Lim, H. Choi, J.M. Myoung, Photo-induced hydrophilic properties of reactive RF magnetron sputtered TiO2 thin films, Surf. Coat. Technol. 204 (2010) 3436–3442.

DOI: 10.1016/j.surfcoat.2010.04.001

Google Scholar

[13] B.X. Zhao, J.C. Zhou, L.Y. Rong, Microstructure and optical properties of TiO2 thin films deposited at different oxygen flow rates, Trans. Nonferrous Met. Soc. China 20 (2010) 1429–1433.

DOI: 10.1016/s1003-6326(09)60316-2

Google Scholar

[14] P.K. Song, Y. Irie, Y. Shigesato, Crystallinity and photocatalytic activity of TiO2 films deposited by reactive sputtering with radio frequency substrate bias, Thin Solid Films 496 (2006) 121–125.

DOI: 10.1016/j.tsf.2005.08.249

Google Scholar

[15] L. Chen, M.E. Graham, G. Li, K.A. Gray, Fabricating highly active mixed phase TiO2 photocatalysts by reactive DC magnetron sputter deposition, Thin Solid Films 515 (2006) 1176–1181.

DOI: 10.1016/j.tsf.2006.07.094

Google Scholar

[16] K. Okimura, A. Shibata, N. Maeda, K. Tachibana, Preparation of Rutile TiO2 Films by RF Magnetron Sputtering, Jpn. J. Appl. Phys. 34 (1995) 4950–4955.

DOI: 10.1143/jjap.34.4950

Google Scholar

[17] S. Ohno, D. Sato, M. Kona, P.K. Song, M. Yoshikawa, K. Suzuki, P. Frach, Y. Shigesato, Plasma emission control of reactive sputtering process in mid-frequency mode with dual cathodes to deposit photocatalytic TiO2 films, Thin Solid Films 445 (2003) 207–212.

DOI: 10.1016/s0040-6090(03)01152-0

Google Scholar

[18] I. Turkevych, Y. Pihosh, M. Goto, A. Kasahara, M. Tosa, S. Kato, K. Takehana, T. Takamasu, G. Kido, N. Koguchi, Photocatalytic properties of titanium dioxide sputtered on a nanostructured substrate, Thin Solid Films 516 (2008) 2387–2391.

DOI: 10.1016/j.tsf.2007.04.083

Google Scholar

[19] C.C. Chen, W.J. Yang, C.Y. Hsu, Investigation into the effects of deposition parameters on TiO2 photocatalyst thin films by rf magnetron sputtering, Superlattices Microstruct. 46 (2009) 461–468.

DOI: 10.1016/j.spmi.2009.05.007

Google Scholar

[20] O. Treichel, V. Kirchhoff, The influence of pulsed magnetron sputtering on topography and crystallinity of TiO2 films on glass, Surf. Coat. Technol. 123 (2000) 268–272.

DOI: 10.1016/s0257-8972(99)00522-8

Google Scholar

[21] K. Eufinger, D. Poelman, H. Poelman, R.D. Gryse, G.B. Marin, Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films, Appl. Surf. Sci. 254 (2007) 148–152.

DOI: 10.1016/j.apsusc.2007.07.009

Google Scholar

[22] A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 photocatalysis, Fundamentals and applications, 1st ed. BKC, Tokyo, 1999.

Google Scholar

[23] D. Mardare, G.I. Rusu, The inf luence of heat treatment on the optical properties of titanium oxide thin films, Mater. Lett. 56 (2002) 210–214.

DOI: 10.1016/s0167-577x(02)00441-x

Google Scholar

[24] B. Xia , H. Huang, Y. Xie, Heat treatment on TiO2 nanoparticles prepared by vapor-phase hydrolysis, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 57 (1999) 150–154.

DOI: 10.1016/s0921-5107(98)00322-5

Google Scholar

[25] X. Deng, Y. Yue, Z. Gao, Gas-phase photo-oxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations, Appl. Catal. B-Environ. 39 (2002) 135–147.

DOI: 10.1016/s0926-3373(02)00080-2

Google Scholar

[26] R.R. Bacsa, J. Kiwi, Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid, Appl. Catal. B-Environ. 16 (1998) 19–29.

DOI: 10.1016/s0926-3373(97)00058-1

Google Scholar

[27] D.S. Muggli, L. Ding, Photocatalytic performance of sulfated TiO2 and Degussa P25 TiO2 during oxidation of organics, Appl. Catal. B-Environ. 32 (2001) 181–194.

DOI: 10.1016/s0926-3373(01)00137-0

Google Scholar

[28] T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura1, Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases, J. Catal. 203 (2001) 82–86.

DOI: 10.1006/jcat.2001.3316

Google Scholar

[29] A.R. Khataee, H. Aleboyeh, A. Aleboyeh, Crystallite phase-controlled preparation, characterisation and photocatalytic properties of titanium dioxide nanoparticles, J. Exp. Nanosci. 4, no. 2 (2009) 121-137.

DOI: 10.1080/17458080902929945

Google Scholar

[30] Q. Li, D. Sun, H. Kim, Fabrication of porous TiO2 nanofiber and its photocatalytic activity, Mater. Res. Bull. 46 (2011) 2094–2099.

DOI: 10.1016/j.materresbull.2011.06.034

Google Scholar

[31] S.K. Zheng, G. Xiang, T.M. Wang, F. Pan, C. Wang, W.C. Hao, Photocatalytic activity studies of TiO2 thin films prepared by r.f. magnetron reactive sputtering, Vacuum 72 (2003) 79–84.

DOI: 10.1016/s0042-207x(03)00104-0

Google Scholar

[32] F. Lapostolle, A. Billard, J. von Stebut, Structure/mechanical properties relationship of titanium-oxygen coatings reactively sputter-deposited, Surf. Coat. Technol. 135 (2000) 1–7.

DOI: 10.1016/s0257-8972(00)00721-0

Google Scholar

[33] JCPDS-ICDD, The International Centre for Diffraction Data, PCPDFWIN 2.4, 2003.

Google Scholar

[34] C.H. Chen, E.M. Kelder, Electrostatic sol-spray deposition (ESSD) and characterisation of nanostructured TiO2 thin films, Thin Solid Films 342 (1999) 35–41.

DOI: 10.1016/s0040-6090(98)01160-2

Google Scholar

[35] T. Sakai, Y. Kuniyoshi, W. Aoki, S. Ezoe, T. Endo, Y. Hoshi, High-rate deposition of photocatalytic TiO2 films by oxygen plasma assist reactive evaporation method, Thin Solid Films 516 (2008) 5860–5863.

DOI: 10.1016/j.tsf.2007.10.039

Google Scholar

[36] Y. Xu, M. Shen, Fabrication of anatase-type TiO2 films by reactive pulsed laser deposition for photocatalyst application, J. Mater. Process. Technol. 202 (2008) 301–306.

DOI: 10.1016/j.jmatprotec.2007.09.015

Google Scholar

[37] T.S. Yang, C.B Shiu, M.S. Wong, Structure and hydrophilicity of titanium oxide films prepared by electron beam evaporation, Surf. Sci. 548 (2004) 75–82.

DOI: 10.1016/j.susc.2003.10.044

Google Scholar

[38] A.G. Spencer, R.P. Howson, R. W. Lewin, Pressure stability in reactive magnetron sputtering, Thin Solid Films 158 (1988) 141–149.

DOI: 10.1016/0040-6090(88)90310-0

Google Scholar