Sedimentary Clays as Geopolymer Precursor

Article Preview

Abstract:

This work aims to study the feasibility of making a geopolymer cement based on dredged sediments, from the Fergoug dam (Algeria) and to evaluate their construction potential particularly interesting in the field of special cementitious materials. These sediments due to their mineralogical composition as aluminosilicates; are materials that can be used after heat treatment. Sedimentary clays were characterized before and after calcination by X-ray diffraction, ATG / ATD, spectroscopy (FTIR) and XRF analysis. The calcination was carried out on the raw material sieved at 80 μm for a temperature of 750 ° C, for 3.4 and 5 hours. The reactivity of the calcined products was measured using isothermal calorimetric analysis (DSC) on pastes prepared by mixing an alkaline solution of sodium hydroxide (NaOH) 8 M in an amount allowing to have a Na / Al ratio close to 1 (1: 1). Also, cubic mortar samples were prepared with a ratio L / S: 0.8, sealed and cured for 24 hours at 60 ° C and then at room temperature until the day they were submited to mechanical testing. to check the extent of geopolymerization. The results obtained allowed to optimize the calcination time of 5 hours for a better reactivity of these sediments, and a concentration of 8M of sodium hydroxide and more suitable to have the best mechanical performances.

You might also be interested in these eBooks

Info:

Pages:

97-111

Citation:

Online since:

November 2018

Export:

Price:

[1] Xu .H, Van Deventer, J. S. J: The geopolymerisation of alumin-osilicate minerals. International Journal of Mineral Processing. 59 (2000) 247-266.

DOI: 10.1016/s0301-7516(99)00074-5

Google Scholar

[2] V.F.F. Barbosa, K.J.D. Mackenzie : Synthesis and thermal behaviour of potassium sialate, Mater. Lett. 57 (2003) 1477-1482.

DOI: 10.1016/s0167-577x(02)01009-1

Google Scholar

[3] J. Davidovits: Synthetic mineral polymer compound of the silicoaluminates family and preparation process. US Patent 4, 472, 199.(1984).

Google Scholar

[4] J. G. S.Van Jaarsveld, J. S. J. Van Deventer, G. C. Lukey: The effect of composition and temperature on the properties of fly ash and kaolinite-based geopolymers. Chemical Engineering Journal. 89 (2002) 63-73.

DOI: 10.1016/s1385-8947(02)00025-6

Google Scholar

[5] N. P. Lemougna , D. J. K. Mackenzie, C. U. F Melo: Synthesis and thermal properties of inorganic polymers (geopolymer) for structural and refractory applications from volcanic ash, Ceramics International. 37 (2011) 3011-3018.

DOI: 10.1016/j.ceramint.2011.05.002

Google Scholar

[6] B.B. Sabir, S.Wild, J. Bai, Metakaolin and calcined clays as pozzolans for concrete: a review. Cem. Concr. Compos. 23 (6) (2001) 441-454.

DOI: 10.1016/s0958-9465(00)00092-5

Google Scholar

[7] A. Elimbi, H.K. Tchakoute, D. Njopwouo : Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements, Construction and Building Materials. 25 (2011) 2805-2812.

DOI: 10.1016/j.conbuildmat.2010.12.055

Google Scholar

[8] F. Zibouche, H. Kerdjoudj, J.-B. de Lacaillerie, H. Van Damme : Geopolymers from Algerian metakaolin: influence of secondary minerals, Appl. Clay Sci. 43 (2009)453-458.

DOI: 10.1016/j.clay.2008.11.001

Google Scholar

[9] P.Duxson A. Fernández-Jiménez J.L. Provis, G.C. Lukey A. Palomo J.S.J. van Deventer : Geopolymer technology: the current state of the art. J. Mater. Sci. 42 (2007)2917-2933.

DOI: 10.1007/s10853-006-0637-z

Google Scholar

[10] J. Rocha, J. Klinowski, Solid-state NMR : studies of the structure and reactivity of metakaolinite, Angew. Chem. Int. Ed. 29 (1990) 553-554.

DOI: 10.1002/anie.199005531

Google Scholar

[11] A.M. Rashad : Metakaolin as cementitious material, history, scours, production and composition a comprehensive overview, Constr. Build. Mater. 41 (2013)303–318.

DOI: 10.1016/j.conbuildmat.2012.12.001

Google Scholar

[12] Ch. Bich, J. Ambroise, J. Péra : Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin, J. Appl. Clay Sci. 44 (2009) 194-20.

DOI: 10.1016/j.clay.2009.01.014

Google Scholar

[13] Davidovits J, Davidovits M : Geopolymer room temperature ceramic matrix for composites. Ceram Eng Sci Proc 9, (1988)842–53.

Google Scholar

[14] A.Palomo , F.P. Glasser : Chemically-bonded cementitious materials based on metakaolin, British Ceramic Transansactions Journal. 91 (1992)107-112.

Google Scholar

[15] Y, Zhang , Sun-Wei : Fly ash based geopolymer concrete. Indian Concr J (2006)1-5.

Google Scholar

[16] T. Chareerat., A. Lee-Anansaksiri, P. Chindaprasirt : Synthesis of high calcium fly ash and calcined kaolin geopolymer mortar. Int Conf Concr Geopolym, Khon Kaen, Thailand. (2006)327-35.

Google Scholar

[17] J.H .Chen, J.S. Huang, Y.W .Chang : A preliminary study of reservoir sludge as a raw material of inorganic polymers. Construction and Building Materials. 23 (2009) 3264 3269.

DOI: 10.1016/j.conbuildmat.2009.05.006

Google Scholar

[18] C. Ferone, F .Colangelo, R.Cioffi, F. Montagnaro, L. Santoro : Use of reservoir clay sediments as raw materials for geopolymer binders. Adv. Appl. Ceram. 112 (4) (2013a) 184-189.

DOI: 10.1179/1743676112y.0000000064

Google Scholar

[19] B. Molino, A.De Vincenzo, C. Ferone, F. Messina, F. Colangelo, R. Cioffi : Recycling of clay sediments for geopolymer binder production. A new perspective for reservoir management in the framework of Italian legislation, The Occhito Reservoir Case Study. Materials 7 (8) (2014).

DOI: 10.3390/ma7085603

Google Scholar

[20] J. Davidovits, Geopolymer: Chemistry and Applications, third ed., Institute Géopolymère, St-Quentin, 2011 pp.149-200.

Google Scholar

[21] N. Bouhamou, F. Mostefa, A. Mebrouki, The influence of dredged of natural waste shrinkage behavior of self-compacting concrete for achieving environmental sustainability. Key Engineering Materials. 650 (2015) 91-104.

DOI: 10.4028/www.scientific.net/kem.650.91

Google Scholar

[22] P. Duxson, G.C. Lukey, J.S.J. Deventer : Physical evolution of Na-geopolymer derived from metakaolin up to 1000 C. J. Mater. Sci. 42 (2007a) 3044-3054.

DOI: 10.1007/s10853-006-0535-4

Google Scholar

[23] P.Rovnanik: Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and Building Materials, 24. (2010) 1176-1183.

DOI: 10.1016/j.conbuildmat.2009.12.023

Google Scholar

[24] R.Hardy, M.Tucker: X-ray diffraction. Techniques in Sedimentology. Blackwell,Oxford, (1988).

Google Scholar

[25] C. Bich: Contribution à l'étude de l'activation thermique du kaolin: évolution de la structure cristallographique et activité pouzzolanique (Ph.D. thesis), Institut National des SciencesAppliquees de Lyon, Lyon, France, (2005).

Google Scholar

[26] N .ESSAIDI : Formulation de liant aluminosilicaté de type géopolymère à base de différentes argiles Tunisiennes, Université de Limoges, (2013).

Google Scholar

[27] S. KRIBI: Décomposition des matières organiques et stabilisation des métaux lourds dans les sédiments de dragage, (Ph.D. thesis), (LGPSD) INSA de Lyon ,(2005).

Google Scholar

[28] A. ASSIFAOUI : Etude de la stabilité des barbotines à base d'argiles locales : application aux formulations céramiques industrielles. Doctorat, Université Hassan II, Casablanca, Maroc, (2002).

Google Scholar

[29] S. Caillere, S. Henin , M. Rautureau : Minéralogie des argiles, 2e édition, Masson et Cie ,(1982).

Google Scholar

[30] L .Vaculíková, E. Plevová : Identification of clay minerals and micas in sedimentary rocks. Acta Geodyn. Geomater., 2 (138), (2005) 167-175.

Google Scholar

[31] H.T.S. Britton, S.J. Gregg, G.W. Winsor : The calcination of dolomite. Part I.-the kinetics of the thermal decomposition of calcite and of magnesite.Transactions of Faraday Society.48 (1952) 63-69.

DOI: 10.1039/tf9524800063

Google Scholar

[32] A. Autef, E. Joussein, G. Gasgnier, S. Rossignol : Role of the silica source on the geopolymerization rate, J. Non-Cryst. Solids 358 (2012) 2886-2893.

DOI: 10.1016/j.jnoncrysol.2012.07.015

Google Scholar

[33] G. W. Brindley: Cerâmica 24 102 (1978) 217-224.

Google Scholar

[34] G. W. Brindley, G. Brown: Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical society, London (1980).

Google Scholar

[35] Moore and Reynolds : X-Ray diffraction and the identification and analysis of clay minerals. Oxford University Press, (1989).

Google Scholar

[36] V. Ramasamy, S. Murgesan, and S. Mullainathan : Distribution and characterization of minerals in Cauvery river sediments by grain size analysis: a new approach by FT-IR study, Ind. Mineral., 39 (2005) 91.

Google Scholar

[37] R. Hamzaoui, F. Muslim, S. Guessasma , et al : Powder Technol. 271 (2015) 228.

Google Scholar

[38] Wolf, R. G: Am. Mineral. 48 (1963) 390.

Google Scholar

[39] H. VAN .Olphenh, J.J. Fripiat : Data Handbook for Clay Materials and Other Non-Metallic Minerals. Pergamon Press, Oxford (1979).

Google Scholar

[40] N. Y. Mostafa, Q. Mohsen,A. El-maghraby: Characterization of low-purity clays for geopo-lymer binder formulation , International Journal of Minerals, Metallurgy and Materials ,21(6) (2014) 609.

DOI: 10.1007/s12613-014-0949-y

Google Scholar

[41] V. C. Farmer, Infrared spectroscopy: Data handbook for clay materials and other non-metallic minerals , ed. par H. VAN .Olphenh, J.J. Fripiat. Oxford: Pergamon Press, 1979, pp.285-330.

Google Scholar

[42] J.D Russell, Infrared methods: a hand book of determinative methods in clay mineralogy, Wilson MJ (Ed.), Blackie & Son Ltd, NY, (1987).

Google Scholar

[43] P. Duxson : The structure and thermal evolution of metakaolin geopolymers, (PhD thesis) Mulbourn University, (2006).

Google Scholar

[44] E. Balan, A. M. Saitta, F. Mauri, G. Calas : First-principles modeling of the infrared spectrum of kaolinite American Mineralogist, 86 (2001) 1321-1330.

DOI: 10.2138/am-2001-11-1201

Google Scholar

[45] J.D. RUSSELL, V.C. FARMER : Clay Miner. Bull. 5, 443. (1964).

Google Scholar

[46] B. Tyagi, C. D. Chudasama and R. V. Jasra : Determination of structural modification in acid activa montmorillonite clay by FT-IR spectroscopy, Spectrochim. Acta A. 64A (2006) 273-278.

DOI: 10.1016/j.saa.2005.07.018

Google Scholar

[47] Anja Buchwald, R. Tatarin, D. Stephan : Reaction progress of alkaline-activated metakaolin ground granulated blast furnace slag blends, J Mater Sci. 44 (2009) 5609-5617.

DOI: 10.1007/s10853-009-3790-3

Google Scholar

[48] X. Yao, Z. Zhang, H. Zhu, Y. Chen : Geopolymerization process of alkalimetakaolinite characterized by isothermal calorimetry, Thermochimica Acta Thermochimica Acta. 493 (2009) 49-54.

DOI: 10.1016/j.tca.2009.04.002

Google Scholar

[49] D. Ravikumar and N. Neithalath : Reaction kinetics in sodium silicate powder and liquid activated slag binders evaluated using isothermal calorimetry, TCA Thermochimica Acta, 546 (2012) 32-43.

DOI: 10.1016/j.tca.2012.07.010

Google Scholar

[50] E. A. S. Vassalo, A. G. Gumieri, M. T. P. Aguilar : Characterization of geopolymers obtained by alkaline activation of metakaolin with high iron content, Sustainable Solution in Structure Engineering and Construction, ISEC Press (2014).

DOI: 10.14455/isec.res.2014.44

Google Scholar

[51] N. Saidi, B. Samet, S. Baklouti : Effect of composition on structure and mechanical properties of metakaolin based PSS-Geopolymer, International Journal of Material Science (IJMSCI) 3 (2013) 145-151.

DOI: 10.14355/ijmsci.2013.0304.03

Google Scholar

[52] R.L. Frost, M.C. Hales, W.N. Martens : Thermogravimetric analysis of selected group (II) carbonate minerals implication for the geosequestration of greenhouse gases, J. Therm. Anal. Calorim. 95 (2009) 999-1005.

DOI: 10.1007/s10973-008-9196-7

Google Scholar

[53] R.Onori, J.Will, A.Hoppe, A.Polettini, R.Pomi, A.R. Boccaccini : Bottom ash-based geopolymer materials: mechanical and environment properties, in : John Wiley & Sons (Eds), Developments in Strategic Materials and Computational Design II, 2001, pp.71-80.

DOI: 10.1002/9781118095393.ch7

Google Scholar

[54] M.A. Villaquir an-Caicedo, R.M. de Gutierrez, S. Sulekar, C. Davis, J.C. Nino : Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources, Appl. Clay Sci. 118 (2015) 276-282.

DOI: 10.1016/j.clay.2015.10.005

Google Scholar

[55] A. Adriano, G. Soriano, J. Duque: Characterization of water absorption and desorption properties of natural zeolites in Ecuador, Fifth International Symposium on Energy, Puerto Rico Energy Center-Laccei, (2013) 1-9.

Google Scholar

[56] M. Zhang, M. Zhao, G. Zhang, T. El-Korchi, M. Tao : A multiscale investigation of reaction kinetics, phase formation, and mechanical properties of metakaolin geopolymers, Cem. Concr. Compos. 78 (2017) 21-32.

DOI: 10.1016/j.cemconcomp.2016.12.010

Google Scholar

[57] H.Y. Zhang,V. Kodur, B. Wu, L. Cao, F. Wang : Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures, Constr. Build. Mater. 109 (2016) 17-24.

DOI: 10.1016/j.conbuildmat.2016.01.043

Google Scholar

[58] M.H. Cornejo, J. Elsen, C. Paredes, H. Baykara : Thermomechanical treatment of two Ecuadorian zeolite-rich tuffs and their potential usage as supplementary cementitious materials, J. Therm. Anal. Calorim. 115 (2014) 309-321.

DOI: 10.1007/s10973-013-3345-3

Google Scholar

[59] L.Yun-Ming, H.C. Yong, M.M. Al Bakri, K.Hussin : Structure and properties of clay-based Greopolymer cement: a review, Progress in Materials Science, volume 83, (2016) 595-629.

Google Scholar

[60] M. S. Muñiz-Villarreal, A. Manzano-Ramírez, S. Sampieri-Bulbarela, J. R. Gasca-Tirado, J. L. Reyes-Araiza, J. C. Rubio-Ávalos, et al : The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer, MLBLUE Materials Letters. 65 (2011).

DOI: 10.1016/j.matlet.2010.12.049

Google Scholar

[61] D. Khale, R. Chaudhary: Mechanism of geopolymerization and factors influencing its development: a review. J Mater Sci, 42 (2007) 729-46.

DOI: 10.1007/s10853-006-0401-4

Google Scholar

[62] S. Alonso, A. Palomo: Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Mater Lett; 47(1–2) (2001) 55–62.

DOI: 10.1016/s0167-577x(00)00212-3

Google Scholar

[63] V.F.F. Barbosa, K.J.D. Mackenzie, and C. Thaumaturgo: Synthesis and Characterisation of Sodium Polysialate Inorganic Polymer Based on Alumina and Silica, Geopolymer International Conference, France, (1999).

DOI: 10.1016/s1466-6049(00)00041-6

Google Scholar

[64] A. A. Adam: Strength and Durability Properties of Alkali Activated Slag and Fly Ash-Based Geopolymer Concrete,( Ph D thesis), (2009).

Google Scholar