Effect of Citrate and Hexadecyltrimethylammonium Bromide on the Formation of Hydroxyapatite Crystal in a Thermal Aqueous Solution

Article Preview

Abstract:

To calrify the combined effect of soft template and biominormolecule on the formation of hydroxyapatite (HAp), the study on the growth of HAp regulated by citrate and(or) hexadecyltrimethylammonium bromide (CTAB) solution was developed in a thermal aqueous. The as-obtained products were characterized by XRD, FT-IR and TEM, altogether with HRTEM and ED. Plate-like HAp crystals in nanosize with relative weak crystallinity were obtained in the presence of citrate. Nano-needle shape HAp crystals were produced in the presence of CTAB. Rod-like HAp crystals in a uniform nanosize were formed under the regulation of CTAB and citrate, which showed the same orientation as that of CTAB only. However, the possible mechanism of the growth of HAp was discussed in detail. CTAB micelles worked as a soft template modified by citrate, which guided to form HAp crystals in different morphology. The study is benefit to control the formation of HAp for its bioapplication.

You might also be interested in these eBooks

Info:

Pages:

51-61

Citation:

Online since:

March 2015

Export:

Price:

* - Corresponding Author

[1] M.G. Ma, Y.J. Zhu and J. Chang, Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite, J. Phys. Chem. B, 110 (2006) 14226-14230.

DOI: 10.1021/jp061738r

Google Scholar

[2] K. Furuichi, Y. Oaki and H. Imai, Preparation of nanotextured and nanofibrous hydroxyapatite through dicalcium phosphate with gelatin, Chem. Mater., 18 (2006) 229-234.

DOI: 10.1021/cm052213z

Google Scholar

[3] W. Tjandra, J. Yao, P. Ravi, K.C. Tam and A. Alamsjah, Nanotemplating of calcium phosphate using a double-hydrophilic block copolymer, Chem. Mater., 17 (2005) 4865-4872.

DOI: 10.1021/cm050679b

Google Scholar

[4] I.S. Neira, Y.V. Kolen'ko, O.I. Lebedev, G. Van Tendeloo, H.S. Gupta, F. Guitián and M. Yoshimura, An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis, Cryst. Growth Des., 9 (2008) 466-474.

DOI: 10.1021/cg800738a

Google Scholar

[5] A. Peytcheva, H. Cölfen, H. Schnablegger and M. Antonietti, Calcium phosphate colloids with hierarchical structure controlled by polyaspartates, Colloid Polym. Sci., 280 (2002) 218-227.

DOI: 10.1007/s00396-001-0600-0

Google Scholar

[6] G. Wei, J. r. Reichert, J. r. Bossert and K.D. Jandt, Novel biopolymeric template for the nucleation and growth of hydroxyapatite crystals based on self-assembled fibrinogen fibrils, Biomacromolecules, 9 (2008) 3258-3267.

DOI: 10.1021/bm800824r

Google Scholar

[7] Y. Wu and S. Bose, Nanocrystalline hydroxyapatite: micelle templated synthesis and characterization, Langmuir, 21 (2005) 3232-3234.

DOI: 10.1021/la046754z

Google Scholar

[8] C. Liu, X. Ji and G. Cheng, Template synthesis and characterization of highly ordered lamellar hydroxyapatite, Appl. Surf. Sci., 253 (2007) 6840-6843.

DOI: 10.1016/j.apsusc.2007.01.119

Google Scholar

[9] Y. Liu,D. Hou and G. Wang, A simple wet chemical synthesis and characterization of hydroxyapatite nanorods, Mate. chem. and phys., 86 (2004) 69-73.

Google Scholar

[10] J. Yao, W. Tjandra, Y.Z. Chen, K.C. Tam, J. Ma and B. Soh, Hydroxyapatite nanostructure material derived using cationic surfactant as a template, J. of Mater. Chem., 13 (2003) 3053-3057.

DOI: 10.1039/b308801d

Google Scholar

[11] P.M. Sl Shanthi, M. Ashok, T. Balasubramanian, A. Riyasdeen and M. Akbarsha, Synthesis and characterization of nano-hydroxyapatite at ambient temperature using cationic surfactant, Mater. Lett., 63 (2009) 2123-2125.

DOI: 10.1016/j.matlet.2009.07.008

Google Scholar

[12] V. Sharma, M. Johnsson, J. Sallis and G. Nancollas, Influence of citrate and phosphocitrate on the crystallization of octacalcium phosphate, Langmuir, 8 (1992) 676-679.

DOI: 10.1021/la00038a062

Google Scholar

[13] A. Wierzbicki and H. Cheung, Molecular modeling of inhibition of hydroxyapatite by phosphocitrate, J. of Mol. Struc.: THEOCHEM, 529 (2000) 73-82.

DOI: 10.1016/s0166-1280(00)00534-0

Google Scholar

[14] M. Salarian, M. Solati-Hashjin, S.S. Shafiei, R. Salarian and Z.A. Nemati, Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol, Ceram. Int., 35 (2009).

DOI: 10.1016/j.ceramint.2009.02.031

Google Scholar

[15] Y. Wang, J. Chen, K. Wei, S. Zhang and X. Wang, Surfactant-assisted synthesis of hydroxyapatite particles, Mater. Lett., 60 (2006) 3227-3231.

DOI: 10.1016/j.matlet.2006.02.077

Google Scholar

[16] Y.Y. Hu, X. Liu, X. Ma, A. Rawal, T. Prozorov, M. Akinc, S. Mallapragada and K. Schmidt-Rohr, Biomimetic self-assembling copolymer− hydroxyapatite nanocomposites with the nanocrystal size controlled by citrate, Chem. Mate., 23 (2011) 2481-2490.

DOI: 10.1021/cm200355n

Google Scholar

[17] E. Rosseeva,O. Golovanova and O. Frank-Kamenetskaya, The influence of amino acids on the formation of nanocrystalline hydroxyapatite, Glass Phys. and Chem-Engl TR, 33 (2007) 283-286.

DOI: 10.1134/s1087659607030170

Google Scholar

[18] R. Gonzalez-McQuire, J.Y. Chane-Ching, E. Vignaud, A. Lebugle and S. Mann, Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods, J. Mater. Chem., 14 (2004) 2277-2281.

DOI: 10.1039/b400317a

Google Scholar

[19] C. Li, L. Zhao, J. Han, R. Wang, C. Xiong and X. Xie, Synthesis of citrate-stabilized hydrocolloids of hydroxyapatite through a novel two-stage method: A possible aggregates–breakdown mechanism of colloid formation, J. Colloid Interface Sci., 360 (2011).

DOI: 10.1016/j.jcis.2011.04.059

Google Scholar

[20] M. Iijima and J. Moradian-Oldak, Control of octacalcium phosphate and apatite crystal growth by amelogenin matrices, J. Mater. Chem., 14 (2004) 2189-2199.

DOI: 10.1039/b401961j

Google Scholar

[21] Y.J. Wu, Y.H. Tseng and J.C. Chan, Morphology control of fluorapatite crystallites by citrate ions, Cryst. Growth Des., 10 (2010) 4240-4242.

DOI: 10.1021/cg100859m

Google Scholar

[22] B. Jokic, D. Tanaskovic, I. Jankovic-Castvan, S. Drmanic, R. Petrovic and D. Janackovic, Synthesis of nanosized calcium hydroxyapatite particles by the catalytic decomposition of urea with urease, J. Mater. Res., 22 (2007) 1156-1161.

DOI: 10.1557/jmr.2007.0170

Google Scholar

[23] Q.J. He and Z.L. Huang, Template‐directed growth and characterization of flowerlike porous carbonated hydroxyapatite spheres, Cryst. Res. Tech., 42 (2007) 460-465.

DOI: 10.1002/crat.200610848

Google Scholar

[24] X. Cheng, Z. Huang, J. Li, Y. Liu, C. Chen, R. -a. Chi and Y. Hu, Self-assembled growth and pore size control of the bubble-template porous carbonated hydroxyapatite microsphere, Cryst. Growth Des., 10 (2010) 1180-1188.

DOI: 10.1021/cg901088c

Google Scholar

[25] C. Chen, J. Li, Z. Huang, X. Cheng, J. Yu, H. Wang, R. -a. Chi and Y. Hu, Phase transformation process and step growth mechanism of hydroxyapatite whiskers under constant impulsion system, J. Cryst. Growth, 327 (2011) 154-160.

DOI: 10.1016/j.jcrysgro.2011.05.026

Google Scholar

[26] A. López‐Macipe, J. Gómez‐Morales and R. Rodríguez‐Clemente, Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating, Advan. Mater., 10 (1998) 49-53.

DOI: 10.1002/(sici)1521-4095(199801)10:1<49::aid-adma49>3.0.co;2-r

Google Scholar

[27] C. Zhang, J. Yang, Z. Quan, P. Yang, C. Li, Z. Hou and J. Lin, Hydroxyapatite nano-and microcrystals with multiform morphologies: controllable synthesis and luminescence properties, Cryst. Growth Des., 9 (2009) 2725-2733.

DOI: 10.1021/cg801353n

Google Scholar

[28] Y.Y. Hu, A. Rawal and K. Schmidt-Rohr, Strongly bound citrate stabilizes the apatite nanocrystals in bone, Proc. Nat. Acad. Sci. USA, 107 (2010) 22425-22429.

DOI: 10.1073/pnas.1009219107

Google Scholar

[29] H. Li, M. Zhu, L. Li and C. Zhou, Processing of nanocrystalline hydroxyapatite particles via reverse microemulsions, J. Mater. Sci., 43 (2008) 384-389.

DOI: 10.1007/s10853-007-2182-9

Google Scholar

[30] Y. Wang, C. Lai, K. Wei and S. Tang, Influence of temperature, ripening time, and cosurfactant on solvothermal synthesis of calcium phosphate nanobelts, Mater. Lett., 59 (2005) 1098-1104.

DOI: 10.1016/j.matlet.2004.12.016

Google Scholar

[31] L. Yan, Y. Li, Z.X. Deng, J. Zhuang and X. Sun, Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods, Int. J. Inorg. Mater., 3 (2001) 633-637.

DOI: 10.1016/s1466-6049(01)00164-7

Google Scholar

[32] T. Ma, Z. Xia and L. Liao, Effect of reaction systems and surfactant additives on the morphology evolution of hydroxyapatite nanorods obtained via a hydrothermal route, Appl. Surf. Sci., 257 (2011) 4384-4388.

DOI: 10.1016/j.apsusc.2010.12.067

Google Scholar

[33] H. Yang, L. Hao, N. Zhao, M. Huang, C. Du and Y. Wang, The growth process of regular radiated nanorod bundles hydroxyapatite formed by thermal aqueous solution approach, Mater. Chem. Phys., 141(2013) 488-494.

DOI: 10.1016/j.matchemphys.2013.05.048

Google Scholar