The Lateral Photovoltaic Effect in the Fe3O4/SiO2/p-Si Structure

Article Preview

Abstract:

We report on the results of the study of the lateral photovoltaic effect in the Fe3O4/SiO2/p-Si structure. It is found that maximum of the lateral photovoltage is localized near the measuring contacts and rapidly attenuates when the light spot moves away from them. Correspondence of the photovoltage sign to the conductivity type of the silicon substrate is achieved only taking into account the interface states at the SiO2/p-Si interface. The extreme dependence of the lateral photovoltage on the thickness of the Fe3O4 film is observed, which is due to the fact that the barrier height is laterally inhomogeneous at small thicknesses of magnetite film, whereas at higher thicknesses of the film the lateral photovoltaic effect is short-circuited by this film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-148

Citation:

Online since:

September 2018

Export:

Price:

* - Corresponding Author

[1] J.T. Wallmark, A new semiconductor photocell using lateral photoeffect, Proc. IRE. 45 (1957) 474-483.

DOI: 10.1109/jrproc.1957.278435

Google Scholar

[2] V.S. Vasilev, N.B. Velchev, The photoeffect in silicon planar positional photon-detectors with a high resistivity doped channel, Solid State Electron. 20 (1977) 999-1001.

DOI: 10.1016/0038-1101(77)90210-6

Google Scholar

[3] C.Yu, H.Wang, Large lateral photovoltaic effect in metal-(oxide-) semiconductor structures, Sensors 10 (2010) 10155-10180.

DOI: 10.3390/s101110155

Google Scholar

[4] X. Wang, B. Song, M. Huo, Y. Song, Z. Lv, Y. Zhang, Y. Wang, Y. Song, J. Wen, Y. Sui, J. Tang, Fast and sensitive lateral photovoltaic effects in Fe3O4/Si Schottky junction, RSC Adv. 5 (2015) 65048-65051.

DOI: 10.1039/c5ra11872g

Google Scholar

[5] X. Huang, C. Mei, J. Hu, D. Zheng, Z. Gan, P. Zhou, H.Wang, Potential superiority of p-type silicon based metal-oxide-semiconductor structures over n-type for lateral photovoltaic effects, IEEE Electron Device Lett. 37 (2016) 1018-1022.

DOI: 10.1109/led.2016.2577700

Google Scholar

[6] S.H. Wang, W.X. Wang, L.K. Zou, X. Zhang, J.W. Cai, Z.G. Sun, B.G. Shen, J.R. Sun., Magnetic Tuning of the Photovoltaic Effect in Silicon‐Based Schottky Junctions, Adv. Mater. 26 (2014) 8059-8065.

DOI: 10.1002/adma.201403868

Google Scholar

[7] V.V. Balashev, V.A. Vikulov, A.A. Dimitriev, T.A. Pisarenko, E.V. Pustovalov, V.V. Korobtsov, Evolution of the structural and magnetotransport properties of magnetite films depending on the temperature of their synthesis on the SiO2/Si(001) surface, The Physics of Metals and Metallography 118 (2017).

DOI: 10.1134/s0031918x17050027

Google Scholar

[8] S.M. Sze, Physics of Semiconductor Devices, third ed., Wiley, New York, (2007).

Google Scholar

[9] M. Fonin, R. Pentcheva, Yu.S. Dedkov, M. Sperlich, D.V. Vyalikh, M. Scheffler, U. Rüdiger, G. Güntherodt, Surface electronic structure of the Fe3O4(100): Evidence of a half-metal to metal transition, Phys. Rev. B 72 (2005) 104436-104444.

DOI: 10.1103/physrevb.72.104436

Google Scholar

[10] T.A. Pisarenko, V.V. Balashev, V.A.  Vikulov, A.A. Dimitriev, V.V. Korobtsov, A comparative study of the lateral photovoltaic effect in Fe3O4/SiO2/n-Si and Fe3O4/SiO2/p-Si structures, Physics of the Solid State 60 (2018) in press.

DOI: 10.1134/s1063783418070223

Google Scholar

[11] H. Angermann, Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements, Appl. Surf. Sci. 312 (2014) 3-16. S. Ghosh.

DOI: 10.1016/j.apsusc.2014.05.087

Google Scholar

[12] P.C. Srivastava, Interface states of Fe3O4/Si interfacial structure and effect of magnetic field, J. Electron. Mater. 43 (2014) 4357-4363.

DOI: 10.1007/s11664-014-3392-y

Google Scholar

[13] A.M. Cowley, S.M. Sze, Surface states and barrier height of metal-semiconductor systems, J. Appl. Phys. 36 (1965) 3212-3220.

DOI: 10.1063/1.1702952

Google Scholar

[14] W.B. Mi, Hui Liu, Z.Q. Li, P. Wu, E.Y. Jiang, H.L. Bai, Evolution of structure, magnetic and transport properties of sputtered films from Fe to Fe3O4, J. Phys. D: Appl. Phys. 39 (2006) 5109-5115.

DOI: 10.1088/0022-3727/39/24/002

Google Scholar