Unsteady MHD Slip Flow with Radiative Heat and Mass Transfer over an Inclined Plate Embedded in a Porous Medium

Article Preview

Abstract:

The combined effects diffusion-thermo, chemical reaction, buoyancy forces, radiative heat flux, velocity slip and magnetic field on an unsteady hydromagnetic mixed convective flow of an electrically conducting fluid with heat and mass transfer over an inclined vertical porous plate embedded in a porous medium is studied. The imposed thermal boundary conditions include prescribed uniform plate surface temperature (PST) and prescribed heat flux (PHF). The governing equations are solved analytically with the help of two term perturbation technique. The influence of various thermophysical parameters on the fluid velocity, temperature and species concentration are presented graphically while numerical values of skin friction, Nusselt and Sherwood numbers are presented in tabular form for different values and discussed. A special case of our results show excellent agreement with the earlier results in the literature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-48

Citation:

Online since:

May 2018

Export:

Price:

* - Corresponding Author

[1] R. S. Tripathy, G. C. Dash, S. R. Mishra, S. Baag, Chemical reaction effect onMHD free convective surface over a moving vertical plate through porous medium, Alexandria Engineering Journal ,54 (2015)673-679.

DOI: 10.1016/j.aej.2015.04.012

Google Scholar

[2] R. Nandkeolyar, M. Das,Unsteady MHD free convection flow of a heat absorbing dusty fluid past a flat plate with ramped wall temperature, AfrikaMatematika, 25 (2014) 779-798.

DOI: 10.1007/s13370-013-0151-9

Google Scholar

[3] S. O. Adesanya, O.D. Makinde:MHD oscillatory slip flow and heat transfer in a channel filled with porous media, U.P.B. Sci. Bull., Series A,76(1) (2014) 197-204.

Google Scholar

[4] M. Venkateswarlu, D. Venkata Lakshmi, G. Darmaiah,Influence of slip condition on radiative MHD flow of a viscous fluid in a parallel porous plate channel in presence of heat absorption and chemical reaction,J. Korean Soc. Ind. Appl. Math., 20(4) (2014).

DOI: 10.12941/jksiam.2016.20.333

Google Scholar

[5] J. Prakash, D. Bhanumathi, A. G. V. Kumar, S. V. K. Varma, Diffusion-thermo and radiation effects on unsteady MHD flow through porous medium past an impulsively started infinite vertical plate with variable temperature and mass diffusion, Transport in Porous Media,96 (2013).

DOI: 10.1007/s11242-012-0078-x

Google Scholar

[6] A. Hussanan, Z. Ismail, I. Khan, A. G. Hussein, S. Shafie, Unsteady boundary layer MHD free convection flow in a porous medium with constant massdiffusion and Newtonian heating, European Physical Journal Plus, 129 (2014) 46.

DOI: 10.1140/epjp/i2014-14046-x

Google Scholar

[7] M. Venkateswarlu, P. Padma,Unsteady MHD free convective heat and mass transfer in a boundary layer flow past a vertical permeable plate with thermal radiation and chemical reaction, Procedia Engineering, 127 (2015) 791-799.

DOI: 10.1016/j.proeng.2015.11.414

Google Scholar

[8] V. Malapati, V. L. Dasari,Thermal diffusion, hall current and chemical reaction effects on unsteady MHD natural convective flow past a vertical plate, U. P. B. Sci. Bull., Series D: Mechanical Engineering, 79(1) (2017) 91-106.

Google Scholar

[9] N. Vedavathi, K. Ramakrishna,K. J. Reddy, Radiation and mass transfer effects on unsteady MHD convective flow past an infinite vertical plate with dufour and soret effects, Ain Shams Engineering Journal,6 (2015) 363-371.

DOI: 10.1016/j.asej.2014.09.009

Google Scholar

[10] J. Manjula, P. Padma, M. Gnaneswara Reddy, M. Venakateswarlu, Influence of thermal radiation and chemical reaction on MHD flow, heat and mass transfer over a stretching surface, ProcediaEngineering, 127 (2015) 1315-1322.

DOI: 10.1016/j.proeng.2015.11.489

Google Scholar

[11] N. Siva Kumar, Rushi Kumar, A. G. Vijaya Kumar, Thermal diffusion andchemical reaction effects on unsteady flow past a vertical porous plate with heat sourcedependent in slip flow regime, Journal of Naval Architecture and Marine Engineering, 13 (2016).

DOI: 10.3329/jname.v13i1.20773

Google Scholar

[12] D. Pal, B. Talukdar, Perturbation analysis of unsteady magnetohydrodynamicconvective heat and mass transfer in a boundary layer slip flow past a vertical permeable plate with thermal radiation and chemical reaction, Commun Nonlinear SciNumerSimulat, 15 (2010).

DOI: 10.1016/j.cnsns.2009.07.011

Google Scholar

[13] A. Muhammad, O. D. Makinde, Thermodynamics analysis of unsteady MHD mixed convection with slip and thermal radiation over a permeable surface, Defect and Diffusion Forum, 374 (2017) 29-46.

DOI: 10.4028/www.scientific.net/ddf.374.29

Google Scholar

[14] S. Das, R. N. Jana, O. D. Makinde, Natural convection near a moving vertical plate with ramped heat and mass fluxes in the presence of thermal radiation. Defect and Diffusion Forum, Vol. 377, (2017) 211-232.

DOI: 10.4028/www.scientific.net/ddf.377.211

Google Scholar

[15] V. Malapati, V. L. Dasari,Soret and chemi-cal reaction effects on the radiative MHD flow from an infinite vertical plate, J. Korean Soc. Ind. Appl. Math., 21(1) (2017) 39-61.

Google Scholar

[16] A. Muhammad, O. D. Makinde, Thermodynamics analysis of unsteady MHD mixed convection with slip and thermal radiation over a permeable surface,Defect and Diffusion Forum,374 (2017) 29-46.

DOI: 10.4028/www.scientific.net/ddf.374.29

Google Scholar

[17] S. Das, R. N. Jana, O. D. Makinde: Natural convection near a moving vertical plate with ramped heat and mass fluxes in the presence of thermal radiation. Defect and Diffusion Forum, 377 (2017), pp.211-232.

DOI: 10.4028/www.scientific.net/ddf.377.211

Google Scholar

[18] Y. J. Kim, Unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction, International Journal of Engineering Science, 38(8) (2000) 833-845.

DOI: 10.1016/s0020-7225(99)00063-4

Google Scholar

[19] P. R. Sharma, S. Choudhary, O. D. Makinde, MHD Slip flow and heat transfer over an exponentially stretching permeable sheet embedded in a porous medium with heat source, Frontiers in Heat and Mass Transfer, 9 (2017) 013018 (pp.1-7).

DOI: 10.5098/hmt.9.18

Google Scholar

[20] A. S. Eegunjobi, O. D. Makinde, S. Jangili, Unsteady MHD chemically reacting and radiating mixed convection slip flow past a stretching surface in a porous medium. Defect and Diffusion Forum, 377 (2017) 200-210.

DOI: 10.4028/www.scientific.net/ddf.377.200

Google Scholar

[21] G. Sreedevi, D. R. V. Prasada Rao, O. D. Makinde, G. V. Ramana Reddy, Soret and Dufour effects on MHD flow with heat and mass transfer past a permeable stretching sheet in presence of thermal radiation, Indian Journal of Pure & Applied Physics,55 (2017).

DOI: 10.1002/htj.21723

Google Scholar

[22] O.D. Makinde, I.L. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution, International Journal of Thermal Sciences 109 (2016).

DOI: 10.1016/j.ijthermalsci.2016.06.003

Google Scholar

[23] O.D. Makinde, I.L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, Journal of Molecular Liquids, Journal of Molecular liquids 221 (2016).

DOI: 10.1016/j.molliq.2016.06.047

Google Scholar

[24] K. Avinash, N. Sandeep, O.D. Makinde, I.L. Animasaun, Aligned magnetic field effect on radiative bioconvection flow past a vertical plate with thermophoresis and Brownian motion, Defect and Diffusion Forum 377 (2017) 127-140.

DOI: 10.4028/www.scientific.net/ddf.377.127

Google Scholar

[25] E. M. Sparrow, S. H. Lin, Boundary layers with prescribed heat flux-application to simultaneous convection and radiation, 8(3) (1965) 437-448.

DOI: 10.1016/0017-9310(65)90007-4

Google Scholar

[26] P. Falsaperla, G. Mulone, B. Straughan (2010) Rotating porous convection with prescribed heat flux, International Journal of Engineering Science, 48(7/8) (2010) 685-692.

DOI: 10.1016/j.ijengsci.2010.02.005

Google Scholar