Thermal Stability of Nanograin Structure in Cu-Zn Alloy System

Article Preview

Abstract:

To describe the thermal stability of the nanocrystalline solid solution with weak segregation such as Cu-Zn system, we developed a hybrid model combining the first principles calculation and thermodynamic evaluation. The dependence of the solute segregation behavior on the solute concentration, grain size and temperature were demonstrated. We found that the segregation energy does not change with the solute concentration monotonically. At a constant solute concentration and a given temperature, a nanograin structure can remain stable if the initial grain size is kept in a critical range. The model predictions were confirmed by the experimental measurements that a state of steady nanograin growth can be achieved by designing a certain solute concentration and a proper initial grain size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-38

Citation:

Online since:

November 2017

Export:

Price:

* - Corresponding Author

[1] M. Kapoor, G. B. Thompson, Role of atomic migration in nanocrystalline stability: Grain size and thin film stress states, Curr. Opin. Solid ST M. 19 (2015) 138-146.

DOI: 10.1016/j.cossms.2014.11.001

Google Scholar

[2] D. Raabe, M. Herbig, S. Sandlöbes, et al, Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces, Curr. Opin. Solid ST M. 18 (2014) 253-261.

DOI: 10.1016/j.cossms.2014.06.002

Google Scholar

[3] J. R. Trelewicz, C. A. Schuh, Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys, Phys. Rev. B 79 (2009) 094112.

DOI: 10.1103/physrevb.79.094112

Google Scholar

[4] J. Weissmuller, Alloy effects in nanostructures, Nanostructured Mater. 3 (1993) 261-272.

Google Scholar

[5] R. Kirchheim, Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background, Acta Mater. 55 (2007) 5129-5138.

DOI: 10.1016/j.actamat.2007.05.047

Google Scholar

[6] J. Weissmuller, W. Krauss, T. Haubold, et al, Atomic structure and thermal stability of nanostructured Y-Fe alloys, Nanostructured Mater. 1 (1992) 439-447.

DOI: 10.1016/0965-9773(92)90076-a

Google Scholar

[7] T. Chookajorn, H. A. Murdoch, C. A. Schuh, Design of stable nanocrystalline alloys, SCIENCE 337 (2012) 951-954.

DOI: 10.1126/science.1224737

Google Scholar

[8] A. Khalajhedayati, Z. L. Pan, T. J. Rupert, Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility, Nat. Commun. 7 (2016) 10802.

DOI: 10.1038/ncomms10802

Google Scholar

[9] A. J. Detor, C. A. Schuh, Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni–W system, Acta Mater. 55 (2007) 4221-4232.

DOI: 10.1016/j.actamat.2007.03.024

Google Scholar

[10] D. Yang, L. L. Wei, X. L. Chao, et al, First-principles calculation of the effects of Li-doping on the structure and piezoelectricity of (K 0. 5 Na 0. 5) NbO 3 lead-free ceramics, Phys. Chem. Chem. Phys. 18 (2016) 7702-7706.

DOI: 10.1039/c5cp06629h

Google Scholar

[11] A. Fujita, Y. Kinemuchi, W. Yamaguchi, Study of entropic characteristics of strongly correlated systems using VO 2 as a model case, Phys. Chem. Chem. Phys. 18 (2016) 30824-30829.

DOI: 10.1039/c6cp06200h

Google Scholar

[12] D. Scheiber, V. I. Razumovskiy, P. Puschnig, et al, Ab initio description of segregation and cohesion of grain boundaries in W–25at. % Re alloys, Acta Mater. 88 (2015) 180-189.

DOI: 10.1016/j.actamat.2014.12.053

Google Scholar

[13] M. Seyring, X. Y. Song, M. Rettenmayr, Advance in orientation microscopy: quantitative analysis of nanocrystalline structures, ACS Nano 5 (2011) 2580-2586.

DOI: 10.1021/nn1023126

Google Scholar

[14] M. L. Kronberg, F. H. Wilson, Am Inst Mining Metall Eng, J. Metals 1 (1949) 501-514.

Google Scholar

[15] H. J. Fecht, Intrinsic instability and entropy stabilization of grain boundaries, Phys. Rev. Lett. 65 (1990) 610-613.

DOI: 10.1103/physrevlett.65.610

Google Scholar

[16] M. Wagner, Structure and thermodynamic properties of nanocrystalline metals, Phys. Rev. B 45 (1992) 635-639.

Google Scholar

[17] W. W. Xu, X. Y. Song, N. D. Lu, et al, Nanoscale thermodynamic study on phase transformation in the nanocrystalline Sm2Co17 alloy, Nanoscale 1 (2009) 238-244.

DOI: 10.1039/b9nr00084d

Google Scholar

[18] W. W. Xu, X. Y. Song, Z. X. Zhang, et al, Experimental and modeling studies on phase stability of nanocrystalline magnetic Sm2Co7, Mater. Sci. Eng. B 178 (2013) 971-976.

DOI: 10.1016/j.mseb.2013.05.009

Google Scholar

[19] X. Y. Song, J. X. Zhang, L. M. Li, et al, Correlation of thermodynamics and grain growth kinetics in nanocrystalline metals, Acta Mater. 54 (2006) 5541-5550.

DOI: 10.1016/j.actamat.2006.07.040

Google Scholar

[20] P. Vinet, J. R. Smith, J. Ferrante, et al, Temperature effects on the universal equation of state of solids, Phys. Rev. B 35 (1987) 1945-(1953).

DOI: 10.1103/physrevb.35.1945

Google Scholar

[21] M. A. Blanco, E. Francisco, V. Luana, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun. 158 (2004) 57-72.

DOI: 10.1016/j.comphy.2003.12.001

Google Scholar