Motion of Williamson Fluid over an Upper Horizontal Surface of a Paraboloid of Revolution due to Partial Slip and Buoyancy: Boundary Layer Analysis

Article Preview

Abstract:

In this article, the motion of a non-Newtonian visco-inelastic fluid over an object that is neither a cone/wedge nor horizontal/vertical is presented. It is assumed that partial slip and buoyancy induces the flow of Williamson fluid over this kind of object herein referred to as an upper horizontal surface of a paraboloid of revolution. Considering the relationship between the thicknesses of the object and velocity index; the relevance of partial slip at the leading edge is significant and illustrated in this article. The governing equation which models the flow is non-dimensionalized and parameterized. The corresponding dimensionless equations are solved numerically using shooting technique along with fourth order Runge-Kutta integration scheme. Due to the presence of partial slip and thermal jump, increase in horizontal velocity at the wall is ascertained. The decrease in local heat transfer rate is ascertained within large interval next to the surface of a paraboloid of revolution in the absence of partial slip and thermal jump. A significant decrease in temperature distribution near the surface of an upper horizontal surface of a paraboloid of revolution is guaranteed with an increase in thermal buoyancy parameter in the presence of thermal jump.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-27

Citation:

Online since:

September 2017

Export:

Price:

* - Corresponding Author

[1] B. C. Sakiadis, Boundary layer behavior on continuous solid surfaces: the boundary layer on a continuous flat surface, American Institute of Chemical Engineers (AIChE), 7, 221–225, (1961).

DOI: 10.1002/aic.690070211

Google Scholar

[2] D. W. Moore, The boundary layer on a spherical gas bubble, Journal of Fluid Mechanics, 16, 161, (1963). doi: 10. 1017/S0022112063000665.

Google Scholar

[3] J. S. Murphy, Some effects of surface curvature on laminar Boundary-Layer Flow, Journal of the Aeronautical Sciences, 20(5), 338–344, (1953).

DOI: 10.2514/8.2638

Google Scholar

[4] I. L. Animasaun, Melting heat and mass transfer in stagnation point micropolar fluid flow of temperature dependent fluid viscosity and thermal conductivity at constant vortex viscosity, Journal of the Egyptian Mathematical Society, 25(1), 79 – 85, (2016).

DOI: 10.1016/j.joems.2016.06.007

Google Scholar

[5] L. Sowerby and J. Cooke, The flow of fluid along corners and edges, The Quarterly Journal of Mechanics and Applied Mathematics, 6(1), 50 – 70, (1953). doi: 10. 1093/qjmam/6. 1. 50.

DOI: 10.1093/qjmam/6.1.50

Google Scholar

[6] S. P. Sawchuk and M. Zamir, Boundary layer on a circular cylinder in axial flow, International Journal of Heat and Fluid Flow, 13(2), 184–188, (1992). doi: 10. 1016/0142-727x(92)90026-6.

DOI: 10.1016/0142-727x(92)90026-6

Google Scholar

[7] S. S. Motsa and I. L. Animasaun, A new numerical investigation of some thermo-physical properties on unsteady MHD non-Darcian flow past an impulsively started vertical surface, Thermal Science, 19(Suppl. 1), S249 – S258, (2015).

DOI: 10.2298/tsci15s1s49m

Google Scholar

[8] A. J. Benazir, R. Sivaraj and M. M. Rashidi, Comparison between Casson fluid flow in the presence of heat and mass transfer from a vertical cone and flat plate, Journal of Heat Transfer, 138(11), 112005, (2016). doi: 10. 1115/1. 4033971.

DOI: 10.1115/1.4033971

Google Scholar

[9] O. K. Koriko, T. Oreyeni, A. J. Omowaye, and I. L. Animasaun, Homotopy analysis of MHD free convective micropolar fluid flow along a vertical surface embedded in non-Darcian thermally-stratified medium, Open Journal of Fluid Dynamics, 6, 198–221, (2016).

DOI: 10.4236/ojfd.2016.63016

Google Scholar

[10] R. I. McLachlan, The boundary layer on a finite flat plate, Physics of Fluids A, 3(2), 341 – 348, (1991). doi: 10. 1063/1. 858143.

DOI: 10.1063/1.858143

Google Scholar

[11] S. S. Motsa and I. L. Animasaun, Paired quasi-linearization analysis of heat transfer in unsteady mixed convection nanofluid containing both nanoparticles and gyrotactic microorganisms due to impulsive motion, Journal of Heat Transfer, 138(11), 114503. doi: 10. 1115/1. 4034039.

DOI: 10.1115/1.4034039

Google Scholar

[12] D. J. Mather, The motion of viscous liquid past a paraboloid, The Quarterly Journal of Mechanics and Applied Mathematics, 14(4), 423 – 430, (1961). doi: 10. 1093/qjmam/14. 4. 423.

DOI: 10.1093/qjmam/14.4.423

Google Scholar

[13] L. L. Lee, Boundary layer over a thin needle, Physics of Fluids, 10, 820, (1967). doi: 10. 1063/1. 1762194.

DOI: 10.1063/1.1762194

Google Scholar

[14] T. Cebeci, T. Y. Na and G. Mosinskis, Laminar boundary layers on slender paraboioids, AIAA Journal, 7(1), 1372-1374, (1969).

DOI: 10.2514/3.5353

Google Scholar

[15] T. M. Ajayi, A. J. Omowaye and I. L. Animasaun, Effects of viscous dissipation and double stratification on MHD Casson fluid flow over a surface with variable thickness: boundary layer analysis, International Journal of Engineering Research in Africa, 28, 73 – 89. doi: 10. 4028/www. scientific. net/JERA. 28. 73.

DOI: 10.4028/www.scientific.net/jera.28.73

Google Scholar

[16] M. K. Nayak, Akbar, N. S., Pandey, V. S., Khan, Z. H., and Tripathi, D. (2017).

Google Scholar

[17] O. K. Koriko, Omowaye, A. J., Sandeep, N., and Animasaun, I. L. (2017).

Google Scholar

[18] C. RamReddy, and Rao, C. V. Non-similarity Solutions for Natural Convective Flow of a Nanofluid Over Vertical Frustum of a Cone Embedded in a Doubly Stratified Non-Darcy Porous Medium. International Journal of Applied and Computational Mathematics, in-press, 1-15. doi: 10. 1007/s40819-017-0343-3.

DOI: 10.1007/s40819-017-0343-3

Google Scholar

[19] O. K. Koriko, A. J Omowaye, I. L. Animasaun and I. O. Babatunde, Boundary layer analysis of exothermic and endothermic kind of chemical reaction in the flow of non-Darcian unsteady micropolar fluid along an infinite vertical surface, International Journal of Engineering Research in Africa, 28, 90 – 101. doi: 10. 4028/www. scientific. net/JERA. 28. 90.

DOI: 10.4028/www.scientific.net/jera.28.90

Google Scholar

[20] H. Leaderman, The fundamentals of boundary layer theory, with some applications to aircraft, The Aeronautical Journal, 40(301), 65–84, (1936). doi: 10. 1017/S0368393100105371.

DOI: 10.1017/s0368393100105371

Google Scholar

[21] C. Ching-Yang, Non similar boundary layer analysis of double-diffusive convection from a vertical truncated cone in a porous medium with variable viscosity, Applied Mathematics and Computation, 212, 185–193, (2009).

DOI: 10.1016/j.amc.2009.02.012

Google Scholar

[22] K. Atalik and Sönmezleru, Heat transfer enhancement for boundary layer flow over a wedge by the use of electric fields, Applied Mathematical Modelling, 35, 4516–4525, (2011) doi: 10. 1016/j. apm. 2011. 03. 023.

DOI: 10.1016/j.apm.2011.03.023

Google Scholar

[23] A. J. Chamkha, S. Abbasbandy, A. M. Rashad, and K. Vajravelu, Radiation effects on mixed convection over a wedge embedded in a porous medium filled with a nanofluid. Transp Porous Med, 91, 261–279, (2012) doi 10. 1007/s11242-011-9843-5.

DOI: 10.1007/s11242-011-9843-5

Google Scholar

[24] A. Majeed, T. Javed, and I. Mustafa, Heat transfer analysis of boundary layer flow over hyperbolic stretching cylinder, Alexandria Engineering Journal, 1333-1339, (2016). doi. org/10. 1016/j. aej. 2016. 04. 028.

DOI: 10.1016/j.aej.2016.04.028

Google Scholar

[25] H. Rosali, A. Ishak, R. Nazar, and I. Pop, Mixed convection boundary layer flow past a vertical cone embedded in a porous medium subjected to a convective boundary condition, Propulsion and Power Research, 5(2), 118–122, (2016).

DOI: 10.1016/j.jppr.2016.04.005

Google Scholar

[26] S. R. G. Rama, S. M. M El-Kabeir and A. M Rashad, Boundary-layer heat transfer froma stretching circular cylinder in a nanofluid, Journal of Thermophysics and Heat Transfer, 25(1), (2014). doi: 10. 2514/1. 51615.

DOI: 10.2514/1.51615

Google Scholar

[27] I. L. Animasaun, J. Prakash, R. Vijayaragavan, and N. Sandeep, Stagnation flow of nanofluid embedded with dust particles over an inclined stretching sheet with induced magnetic field and suction, Journal of Nanofluid, 6(1), 1–10, (2017).

DOI: 10.1166/jon.2017.1308

Google Scholar

[28] I. L. Animasaun, 47nm alumina–water nanofluid flow within boundary layer formed on upper horizontal surface of paraboloid of revolution in the presence of quartic autocatalysis chemical reaction, Alexandria Engineering Journal, 55(3), 2375–2389, (2016).

DOI: 10.1016/j.aej.2016.04.030

Google Scholar

[29] O. D. Makinde and I. L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, Journal of Molecular Liquids, 221, 733–743, (2016).

DOI: 10.1016/j.molliq.2016.06.047

Google Scholar

[30] O. D. Makinde and I. L. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution, International Journal of Thermal Sciences, 109, 159 – 171, (2016).

DOI: 10.1016/j.ijthermalsci.2016.06.003

Google Scholar

[31] I. L. Animasaun and N. Sandeep, Buoyancy induced model for the flow of 36 nm alumina-water nanofluid along upper horizontal surface of a paraboloid of revolution with variable thermal conductivity and viscosity, Powder Technology, 301, 858–867, (2016).

DOI: 10.1016/j.powtec.2016.07.023

Google Scholar

[32] T. M. Ajayi, A. J. Omowaye and I. L. Animasaun, Viscous dissipation effects on the motion of Casson fluid over an upper horizontal thermally stratified melting surface of a paraboloid of revolution: Boundary layer analysis, Journal of Applied Mathematics-Hindawi, in-press.

DOI: 10.1155/2017/1697135

Google Scholar

[33] R. V. Williamson, The flow of pseudoplastic materials, Industrial and Engineering Chemistry, 21(11), 1108-1111, (1929).

DOI: 10.1021/ie50239a035

Google Scholar

[34] S. Nadeem and N. S. Akbar, Numerical solutions of peristaltic flow of Williamson fluid with radially varying MHD in an endoscope, International Journal for Numerical Methods in Fluids, 66, 212–220, (2011). doi: 10. 1002/fld. 2253.

DOI: 10.1002/fld.2253

Google Scholar

[35] T. Hayat and S. Hina, Effects of heat and mass transfer on peristaltic flow of Williamson fluid in a non-uniform channel with slip conditions, International Journal for Numerical Methods in Fluids, 67, 1590–1604, (2011). doi: 10. 1002/fld. 2433.

DOI: 10.1002/fld.2433

Google Scholar

[36] I. Dapra and G. Scarpi, Perturbation solution for pulsatile flow of a non-Newtonian Williamson fluid in a rock fracture, International Journal of Rock Mechanics & Mining Sciences, 44, 271–278, (2007). doi: 10. 1016/j. ijrmms. 2006. 07. 003.

DOI: 10.1016/j.ijrmms.2006.07.003

Google Scholar

[37] N. S. Akbar, T. Hayat, S. Nadeem and S. Obaidat, Peristaltic flow of a Williamson fluid in an inclined asymmetric channel with partial slip and heat transfer, International Journal of Heat and Mass Transfer, 55, 1855–1862, (2012).

DOI: 10.1016/j.ijheatmasstransfer.2011.11.038

Google Scholar

[38] E. N. Maraj, N. S. Akbar, S. Nadeem, Mathematical study for peristaltic flow of Williamson fluid in a curved channel, International Journal of Biomathematics, 8(1) (2015) 1550005. doi: 10. 1142/S1793524515500059.

DOI: 10.1142/s1793524515500059

Google Scholar

[39] R Ellahi, A. Riaz, S. Nadeem, Three dimensional peristaltic flow of Williamson fluid in a rectangular duct, Indian J Phys, doi: 10. 1007/s12648-013-0340-2.

DOI: 10.1007/s12648-013-0340-2

Google Scholar

[40] O. A. Abegunrin, S. O. Okhuevbie, and Animasaun I. L. Comparison between the flow of two non-Newtonian fluids over an upper horizontal surface of paraboloid of revolution: Boundary layer analysis, Alexandria Engineering Journal, 55(3), 1915 – 1929, (2016).

DOI: 10.1016/j.aej.2016.08.002

Google Scholar

[41] S. Nadeem, S. T. Hussain, and Lee C., Flow of a Williamson fluid over a stretching sheet, Brazilian Journal of Chemical Engineering, 30(03), 619-625. doi: 10. 1590/S0104-66322013000300019.

DOI: 10.1590/s0104-66322013000300019

Google Scholar

[42] L. Prandtl, Uber Flussigkeitsbewegung bei sehr kleiner Reibung" translated to "Motion of fluids with very little viscosity, Int. Math. -Kongresses Heidelberg 8 (13) (1904) 1–8.

Google Scholar

[43] T. Y. Na, Computational Methods in Engineering Boundary Value Problems, Academic Press, New York, (1979).

Google Scholar

[44] A. Pantokratoras, A common error made in investigation of boundary layer flows, Appl. Math. Model. 33 (2009) 413–422.

DOI: 10.1016/j.apm.2007.11.009

Google Scholar

[45] A. Jamalabadi, M. Y., Hooshmand, P., Bagheri, N., KhakRah, H., & Dousti, M. (2016).

Google Scholar

[46] B. A. Kumari, Prasad, K. R., & Kavitha, K. (2012). Fully developed free convective flow of a Williamson fluid in a vertical channel under the effect of a magnetic field. Adv App Sci Res, 3, 2492-2499.

Google Scholar