Thermoluminescent Phosphors for Radiation Dosimetry

Article Preview

Abstract:

The use of thermoluminescence (TL) as a method for radiation dosimetry of ionizing radiation has been established for many decades and has found many useful applications in various fields, such as personnel and environmental monitoring, retrospective dosimetry, medical dosimetry, space dosimetry, high-dose dosimetry. Method of preparation, studies and applications of thermoluminescence (TL) dosimetric materials are reviewed. Several high sensitivity thermoluminescent dosimeters (TLDs) are now commercially available in different physical forms. These commercial TL dosimeters comply with a set of stringent requirements stipulated by the International Electrotechnical Commission (IEC). Specific features of TL phosphors for thermal neutron, fast neutron and high-energy charged particle (HCP) dosimetry are also considered. Some of the recent developments in the field of optically stimulated luminescence (OSL) and radiophotoluminescence (RPL) are also summarized. Comparative advantages of TL, OSL and RPL dosimeters are given. Results of recent studies of TL in nanosized materials are briefly presented. Future challenges in this field will also be discussed. Contents of Paper

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-227

Citation:

Online since:

December 2013

Export:

Price:

[1] F. Urbach, Zur Lumineszenz der Alkalihalogenide, Wiener Ber., IIa 139 (1930) 363-372.

Google Scholar

[2] J.T. Randalls, M.H.F. Wilkins, Phosphorescence and electron traps,Proc. Royal Soc. (Lond.) 184 (1945) 366-407.

Google Scholar

[3] G.F.J. Garlick, A.F. Gibson, The electron trap mechanism of luminescence in sulphide and silicate phosphors, Proc. Phys. Soc. A60 (1948) 547-590.

DOI: 10.1088/0959-5309/60/6/308

Google Scholar

[4] D.T. Bartlett, 100 years of solid state dosimetry and radiation protection dosimetry, Radiat. Meas. 43 (2008)133-138.

DOI: 10.1016/j.radmeas.2007.08.004

Google Scholar

[5] F. Daniels, C.A. Boyd and D.F. Saunders, Thermoluminescence as a research tool, Science 117 (1953) 343-349.

DOI: 10.1126/science.117.3040.343

Google Scholar

[6] J.R. Cameron, N. Suntharalingham and G.N. Kenny, Thermoluminescence Dosimetry, Univ. of Wisconsin Press, Madison, 1968.

Google Scholar

[7] J.R. Cameron and G.N. Kenny, Thermoluminescent radiation dosimetry with lithium fluoride. Radiat. Res. 19 (1963) 199-200.

Google Scholar

[8] J.K. Rieke, F. Daniels, Thermoluminescence studies of aluminium oxide, J. Phys. Chem. 61 (1957) 629-633.

DOI: 10.1021/j150551a026

Google Scholar

[9] H.W. Leverenz, Luminescent solids (phosphors), Science 109 (1949) 183-195.

Google Scholar

[10] D. Curie, Luminescence in Crystals, 3rd Ed., John Wiley & Sons Inc, New York,1963.

Google Scholar

[11] M. J. Aitken, M.S. Tite and J. Reid, Thermoluminescent dating of ancient ceramics, Nature 202 (1964) 1032-1033.

DOI: 10.1038/2021032b0

Google Scholar

[12] M.J. Aitken, D. W. Zimmermann and S.J. Fleming, Thermoluminescent dating of ancient pottery, Nature 219 (1968) 442-445.

DOI: 10.1038/219442a0

Google Scholar

[13] First Int. Conf. on Luminescence Dosimetry, Stanford University, USA, June 21- 23, 1965, CONF. 650637, (Ed.) F.H. Attix (1965).

Google Scholar

[14] Second Int. Conf. on Luminescence Dosimetry, Tennessee, USA, Sept. 23-26, 1968, CONF. 680920, (Eds.) J. A. Auxier, K. Becker, E. M. Robinson (1968).

Google Scholar

[15] Thermoluminescence of Geological Materials, Proc. of a NATO Advanced Research Institute on Applications of Thermoluminescence in Geological Problems, Academic Press, London, (Ed.) D.J. McDougall (1968).

DOI: 10.1126/science.163.3874.1442

Google Scholar

[16] Third Int. Conf. on Luminescence Dosimetry, Riso, Denmark, Oct. 11-14, 1971, Danish AEC Report No. 249, (Ed.) V. Mejdahl (1971).

Google Scholar

[17] Fourth Int. Conf. on Luminescence Dosimetry, Krakow, Poland, August 27- 31, 1974, Institute of Nuclear Physics, Krakow, Poland, (Ed.) T. Niewiadomski (1974).

Google Scholar

[18] S.W.S. McKeever, Thermoluminescence of Solids, Cambridge University Press, 1985.

Google Scholar

[19] S.W.S. McKeever, M.Moscovitch, P.D. Townsend, Thermoluminescence Dosimetry Materials: Properties and Uses, Nuclear Technology Publishing, Ashford, Kent, England, 1995.

Google Scholar

[20] M. Takenaga, O. Yamamoto, T. Yamashita, Preparation and characteristics of Li2B4O7:Cu phosphor, Nucl. Instrum. Meth. 175 (1980) 77-78.

DOI: 10.1016/0029-554x(80)90259-1

Google Scholar

[21] B. F. Wall, C. M. H. Driscoll, J. C. Strong and E. S. Fisher, The suitability of different preparations of thermoluminescent lithium borate for medical dosimetry, Phys. Med. Biol. 27 (1982) 1023-1034.

DOI: 10.1088/0031-9155/27/8/004

Google Scholar

[22] C.M.H. Driscoll, A.F. McWhan, J.B. O'Hagan, J.Dodson, S.J. Mundy, C.D.T. Todd, TL characteristics of new LiF preparations and sensitized LiF, Radiat. Prot. Dosim. 17 (1986) 367-371.

DOI: 10.1093/rpd/17.1-4.367

Google Scholar

[23] M. Prokic, L. Botter-Jensen, Comparison of main thermoluminescent properties of some TL dosemeters, Radiat. Prot. Dosim. 47 (1993) 195-199.

DOI: 10.1093/oxfordjournals.rpd.a081731

Google Scholar

[24] Z. Zha, S. Wang, W. Shen, J. Zhu, G. Cai, Preparation and characteristics of LiF:Mg,Cu,P thermoluminescent material, Radiat. Prot. Dosim. 47 (1993)111-118.

DOI: 10.1093/oxfordjournals.rpd.a081714

Google Scholar

[25] J.L. Kim, J.I. Lee, A.S. Pradhan, B.H. Kim, J.S. Kim, Further studies on the dosimetric characteristics of LiF:Mg,Cu,Si—A high sensitivity thermoluminescence dosimeter (TLD), Radiat. Meas. 43 (2008) 446-449.

DOI: 10.1016/j.radmeas.2007.10.045

Google Scholar

[26] M.S. Akselrod V.S. Kortov, D.J. Kravetsky, V.I. Gotlib, Highly sensitive thermoluminescent anion-defective Al2O3:C single crystal detectors, Radiat. Prot. Dosim. 32 (1990) 15-20.

DOI: 10.1093/rpd/33.1-4.119

Google Scholar

[27] Bhuwan Chandra, A.R. Lakshmanan, R.C. Bhatt, Annealing and re-usability characteristics of LiF:Mg,Cu,P TLD phosphor, Radiat. Prot. Dosim. 3 (1982) 161-167.

DOI: 10.1093/oxfordjournals.rpd.a081170

Google Scholar

[28] M. Prokic, Development of highly sensitive CaSO4:Dy/ and MgB4O7:Dy/Tm sintered thermoluminescent dosimeters, Nucl. Instrum. Meth. 175 (1980) 83-86.

DOI: 10.1016/0029-554x(80)90262-1

Google Scholar

[29] T. Hashizume, Y. Kato, T. Nakajima, H. Sakamoto, N. Kotera, S. Eguchi, A new thermoluminescence dosemeter of high sensitivity using a magnesium silicate phosphor. In: Proc. Symp. on Advanced Radiation Detectors, IAEA-SM143/11, Vienna, Austria (1971), p.91.

Google Scholar

[30] M. Prokic, E.G. Yukihara, Dosimetric characteristics of high sensitive Mg2SiO4:Tb solid TL detector, Radiat. Meas. 43 (2008) 463–466.

DOI: 10.1016/j.radmeas.2007.11.025

Google Scholar

[31] B.C. Bhatt, S.S. Sanaye, S.S. Shinde, J.K. Srivastava, A comparative study of the dosimetric characteristics of BaSO4:Eu and CaSO4:Dy Teflon TLD discs, Radiat. Prot. Dosim. 69 (1997) 105-110.

DOI: 10.1093/oxfordjournals.rpd.a031890

Google Scholar

[32] P.R. Gonza´lez, C. Furetta, B.E. Calvo, M.I. Gaso, E. Cruz-Zaragoza, Dosimetric characterization of a new preparation of BaSO4 activated by Eu ions, Nucl. Instrum. Meth .B 260 (2007) 685-692.

DOI: 10.1016/j.nimb.2007.04.155

Google Scholar

[33] K. Becker, Solid State Dosimetry, CRC Press, Boca Raton, Fl., USA, 1973.

Google Scholar

[34] A.F. McKinley, Thermoluminescence Dosimetry, Adam Hilger, Bristol, 1981.

Google Scholar

[35] M. Oberhofer and Scharmann, Applied Thermoluninescence Dosimetry, Adam Hilger, Bristol, 1981.

Google Scholar

[36] Y.S. Horowitz (Ed.), Thermoluminescence and Thermoluminescence Dosimetry, Vols.1- 3, CRC Press, Boca Raton, Fl., USA, 1983.

Google Scholar

[37] S.W.S McKeever (Ed.), Thermoluminescence Marerials, Special Issue, Radiat. Prot. Dosim. 8 (1/2) (1984).

Google Scholar

[38] K. Mahesh, P.S. Weng and C. Furetta, Thermoluminescence in Solids and its Applications, Nuclear Technology Publishing, Ashford, UK, 1989.

Google Scholar

[39] D.R. Vij (Ed.), Thermoluminescence Materials, Prentice Hall, Englewood Cliffs, 1993.

Google Scholar

[40] A.S. Pradhan, Thermoluminescence dosimetry and its applications, Radiat. Prot. Dosim. 1 (1981) 153-167.

Google Scholar

[41] J. Azorin, C. Furetta and A. Scacco, Preparation and properties of thermoluminescent materials, Phys. Stat. Sol. (a) 138 (1993) 9-46.

DOI: 10.1002/pssa.2211380102

Google Scholar

[42] G. Portal, Review of the principal materials available for thermoluminescence dosimetry, Radiat. Prot. Dosim. 17 (1986) 351-357.

Google Scholar

[43] A.J.J. Bos, High sensitivity thermoluminescence dosimetry, Nucl. Instrum. Meth. Phys. Res. B 184 (2001) 3-28.

Google Scholar

[44] T. Yamashita, N. Nada, H. Onishi, and S. Kitamura, Calcium sulphate activated by thulium or dysprosium for thermoluminescent dosimetry, Health Phys. 21(1971) 295–300.

DOI: 10.1097/00004032-197108000-00016

Google Scholar

[45] Harshaw Chemical Company, US patent, 1059518, published (1967).

Google Scholar

[46] G. Portal, Rep. CEA-R-4943 (France), 1978.

Google Scholar

[47] T. Niewiadomski, 25 Years of TL Dosimetry at the Institute of Nuclear Physics, Krakow, Radiat. Prot. Dosim. 65 (1996) 1-6.

Google Scholar

[48] RADCARD (former TLD Poland) (www.radcard.pl)

Google Scholar

[49] Solid Dosimetric Detector & Method Laboratory (DML), P.R. China (www.chinadml.com).

Google Scholar

[50] V.V. Kolotilin, V.I. Hokhrekov, L.M. Tarasova and S.B. Zakhriapin, A high sensitivity LiF:Mg, Cu,P thermolumonscent dosimeter, Nucl. Tracks Radiat. Meas. 21 (1993) 169- 171.

DOI: 10.1016/1359-0189(93)90071-g

Google Scholar

[51] P. Olko, L. Currivan, J. W. E. van Dijk, M. A. Lopez and C. Wernli, Thermoluminescent Detectors Applied in Individual Monitoring of Radiation Workers in Europe - A Review based on the Eurados Questionnaire, Radiat. Prot. Dosim. 120 (2006) 298-302.

DOI: 10.1093/rpd/nci538

Google Scholar

[52] C. M. H. Driscoll, A. McWhan  and D.J. Richards, A Comparative Study of the Sensitivity and Fading Characteristics of Thermoluminescent LiF Chips, Radiat. Prot. Dosim. 11(1985) 119-121.

Google Scholar

[53] G. Holzapfel, J. Lesz and K. Sujak-Lesz, TLD system with a stacked dosimeter configuration. Radiat. Prot. Dosim. 47 (1993) 469–471.

DOI: 10.1093/oxfordjournals.rpd.a081788

Google Scholar

[54] F. Busch, J. Engelhardt, E. Martini and J. Lesz, A Whole-Body Dosimetry System for Personal Monitoring Based on Hot-Pressed Thin Layer TLD, Radiat. Prot. Dosim. 144 (2011) 246-248.

DOI: 10.1093/rpd/ncq554

Google Scholar

[55] M.R. Mayhugh and G.D. Fullerton, Thermoluminescence in LiF: Usefulness of sensitization by pre-irradiation, USAEC Report COO-1105-209 (1974).

DOI: 10.2172/4263711

Google Scholar

[56] M.W. Charles, H.D. Mistry and Z. U. Khan, The theory and practice of simultaneous sensitization and re-estimation in lithium fluoride, Nucl. Instrum. Meth. 175 (1980) 51-53.

DOI: 10.1016/0029-554x(80)90250-5

Google Scholar

[57] Bhuwan Chandra, A. R. Lakshmanan and R. C. Bhatt, Effect of Deep Traps on the Sensitization in LiF (TLD-100) Phosphor, Phys. Stat. Solidi (a) 60 (1980) 593.

DOI: 10.1002/pssa.2210600231

Google Scholar

[58] A.R. Jones, The applicability of sensitized lithium fluoride TLDs to personnel and environmental dosimetry, Nucl. Instrum. Meth. 175 (1980) 145-146.

DOI: 10.1016/0029-554x(80)90285-2

Google Scholar

[59] Bhuwan Chandra, A.R. Lakshmanan and R.C. Bhatt, Incompatibility of Radiation Induced Sensitization and Re- estimation at Low Absorbed Doses in LiF TLD-100, Nucl. Tracks. 10 (1985) 77-81.

DOI: 10.1016/0735-245x(85)90011-0

Google Scholar

[60] T. Nakajima, Y. Murayama, T. Matsuzawa, and A. Koyano, Development of a New Highly Sensitive LiF Thermoluminescent Dosimeter and its Application, Nucl. Instrum. Methods 157 (1978) 155-162.

DOI: 10.1016/0029-554x(78)90601-8

Google Scholar

[61] T.  Nakajima, Y. Murayama, and T. Matsuzawa, Preparation and Dosimetric Properties of a Highly Sensitive LiF Thermoluminescent Dosimeter, Health Phys. 36 (1979) 79-82.

Google Scholar

[62] D. K. Wu, F.Y. Sun, H.C. Dai, A High Sensitivity LiF Thermoluminescent Dosimeter- LiF(Mg, Cu, P), Health Phys. 46 (1984) 1063-1063.

DOI: 10.1097/00004032-198405000-00006

Google Scholar

[63] T. Niwa, H. Morishima, T. Koga, H. Kawai and Y. Nishiwaki, Single Crystal LiF Thermoluminescence Dosemeters, Radiat. Prot. Dosim. 6 (1983) 333-334.

DOI: 10.1093/oxfordjournals.rpd.a082942

Google Scholar

[64] S. Wang, G.R. Chen, F. Wu, Y.F. Li, Z.Y. Zha, and J.H. Zhu, Newly Developed Highly Sensitive LiF:Mg,Cu,P TL Chips with High Signal-to-Noise Ratio, Radiat. Prot. Dosim. 14 (1986) 223-227.

DOI: 10.1093/oxfordjournals.rpd.a079651

Google Scholar

[65] S. Wang, The Dependence of Thermoluminescence Response and Glow Curve Structure of LiF:Mg,Cu,P Material on Mg, Cu, P Dopants Concentration. Radiat. Prot. Dosim. 25 (1988) 133-136.

DOI: 10.1093/oxfordjournals.rpd.a080363

Google Scholar

[66] S. Wang, G. Cai, K. Q. Zhou and R. X. Zhou, Thermoluminescent Response of 6LiF(Mg,Cu,P) and 7LiF(Mg,Cu,P) TL Chips in Neutron and Gamma Ray Mixed Radiation Fields, Radiat. Prot. Dosim. 33 (1990) 247-250.

DOI: 10.1093/rpd/33.1-4.247

Google Scholar

[67] W. Shen, K. Tang,  H. Zhu and B. Liu, New Advances in LiF:Mg,Cu,P TLD(GR-200A), Radiat. Prot. Dosim. 100 (2002) 357-360.

DOI: 10.1093/oxfordjournals.rpd.a005888

Google Scholar

[68] A. Horowitz and Y.S. Horowitz, Optimisation of LiF:Mg,Cu,P for Radiation Protection Dosimetry, Radiat. Prot. Dosim. 33 (1990) 267-270.

DOI: 10.1093/oxfordjournals.rpd.a080807

Google Scholar

[69] J. Azorin, A. Gutiérrez, T. Niewiadomski and P. González, Dosimetric Characteristics of LiF:Mg,Cu,P TL Phosphor Prepared at ININ, Mexico, Radiat. Prot. Dosim. 33 (1990) 283-286.

DOI: 10.1093/oxfordjournals.rpd.a080811

Google Scholar

[70] S. S. Shinde, B. S. Dhabekar, T. K. Gundu Rao, and B. C. Bhatt, Preparation, thermoluminescent and electron spin resonance characteristics of LiF:Mg,Cu,P phosphor, J. Phys. D: Appl. Phys. 34(2001) 2683-2689.

DOI: 10.1088/0022-3727/34/17/317

Google Scholar

[71] R. R. Patil and S. V. Moharil, On the role of copper impurity in LiF:Mg,Cu,P phosphor, J. Phys.: Condens. Matter 7 (1995) 9925-9933.

DOI: 10.1088/0953-8984/7/50/025

Google Scholar

[72] Y.M. Nam, J.L. Kim and S.Y. Chang, Dependence of glow curve structure on the concentration of dopants in LiF:Mg,Cu,Na,Si phosphor. Radiat. Prot. Dosim. 84 (1999) 231–234.

DOI: 10.1093/oxfordjournals.rpd.a032725

Google Scholar

[73] H. Jung, K. J. Lee, J. L. Kim, A personal thermoluminescence dosimeter using LiF:Mg,Cu,Na,Si detectors for photon fields, Appl. Radiat. Isot. 59 (2003) 87-93.

DOI: 10.1016/s0969-8043(03)00120-9

Google Scholar

[74] Lee, J. I., Kim, J. L., Chang, S. Y., Chung, K. S. and Choe, H. S. On the roles of dopants in LiF:Mg,Cu,Na,Si thermoluminescent material, Radiat. Prot. Dosim. 115 (2005) 340–344.

DOI: 10.1093/rpd/nci065

Google Scholar

[75] K. Tang, H. Zhu, W. Shen, B. Liu, A new high sensitivity thermoluminescent phosphor with low residual signal and good stability to heat treatment: LiF:Mg,Cu,Na,Si, Radiat Prot. Dosim.100 (2002) 239-242.

DOI: 10.1093/oxfordjournals.rpd.a005855

Google Scholar

[76] K. Tang, Dependence of thermoluminescence in LiF:Mg,Cu,Na,Si phosphor on Na dopant concentration and thermal treatment, Radiat. Meas. 37 (2003) 133-140.

DOI: 10.1016/s1350-4487(02)00171-3

Google Scholar

[77] J.I. Lee, J.S. Yang, J.L. Kim, A.S. Pradhan, J.D. Lee, K.S. Chung, and H.S. Choe, Dosimetric characteristic of LiF:Mg,Cu,Si thermoluminescence materials, Appl. Phys. Lett. 89 (2006) 094110-3.

Google Scholar

[78] J.I. Lee, J.L. Kim, A.S. Pradhan, B.H. Kim, K.S. Chung, and H.S. Choe, Role of dopants in LiF TLD materials, Radiat. Meas. 43 (2008) 303–308.

DOI: 10.1016/j.radmeas.2007.10.040

Google Scholar

[79] J.I. Lee, J.L. Kim, M.S. Rahman, S.Y. Chang, K.S. Chung, H.S. Choe, Development of LiF:Mg,Cu,Si TL material (new KLT-300) with a low-residual signal and high-thermal stability, Radiat Prot Dosimetry, 125 (2007) 229-232.

DOI: 10.1093/rpd/ncl122

Google Scholar

[80] M.S. Rahman, J.I. Lee, J.L. Kim, G. Cho, Dosimetric Properties of the Newly Developed LiF:Mg,Cu,Si TL Material, J. Sci. Res. 5(1) (2013) 25.

DOI: 10.3329/jsr.v5i1.11935

Google Scholar

[81] J.L. Kim, J.I. Lee, I. Chang, A.S. Pradhan, S.I. Kim, B.H. Kim, TL response of pairs of 6LiF:Mg,Cu,Si/7LiF:Mg,Cu,Si and TLD-600/TLD-700 to 0.1–12 MeV neutrons, Radiat. Meas. 56 (2013) 223-227.

DOI: 10.1016/j.radmeas.2013.01.061

Google Scholar

[82] K. Tang, H. Cui, H. Zhu, Z. Liu and H. Fan, Newly developed highly sensitive LiF:Mg,Cu,Si TL discs with good stability to heat treatment. Radiat. Meas. 47 (2012) 185– 189.

DOI: 10.1016/j.radmeas.2011.12.003

Google Scholar

[83] K. Tang, H. Cui, H. Zhu, Z. Liu, H. Fan, On the Roles of Dopants in LiF:Mg,Cu,Si Thermoluminescent Material, Radiat. Prot. Dosim. 155 (2013) 141-145.

DOI: 10.1093/rpd/ncs333

Google Scholar

[84] S. W. S. McKeever, Measurements of emission spectra during thermoluminescence (TL) from LiF(Mg,Cu,P) TL dosemeters, J. Phys. D: Appl. Phys. 24 (1991) 988-996.

DOI: 10.1088/0022-3727/24/6/027

Google Scholar

[85] S. Mahajna, D. Yossian and Y.S. Horowitz, Defect mechanisms in the thermoluminescence of LiF:Mg, Cu, P, Radiat. Eff. Def. Solids 136 (1995) 181-185.

DOI: 10.1080/10420159508218817

Google Scholar

[86] A.J.J. Bos, K. Meijvogel, J.T.M. de Haas, P. Bilski, P. Olko, Thermoluminescence properties of LiF(Mg,Cu,P) with different copper concentrations, Rad. Prot. Dosim. 65 (1996) 199-202.

DOI: 10.1093/oxfordjournals.rpd.a031620

Google Scholar

[87] P.Bilski, M. Budzanowski and P. Olko, A systematic evaluation of the glow curve structure on the concentration of dopants in LiF:Mg,Cu,P, Rad. Prot. Dosim. 65 (1996) 195- 198.

DOI: 10.1093/oxfordjournals.rpd.a031619

Google Scholar

[88] T.C. Chen and T.G. Stoebe, Role of copper in LiF:Mg,Cu,P thermoluminescent phosphors, Radiat. Prot. Dosim. 78 (1998) 101–106.

Google Scholar

[89] P.Bilski, Lithium fluoride: from LiF:Mg,Ti to LiF:Mg,Cu,P, Radiat. Prot. Dosim. 100, (2002) 196–206.

Google Scholar

[90] P. Bilski, J.M. Bordy, J. Daures, M Denoziere, E. Fantuzzi, P. Ferrari, G. Gualdrini, M. Kopec, F. Mariotti, F. Monteventi, S. Wach, The new EYE-DTM dosemeter for measurements of HP (3) for medical staff, Radiat. Meas. 46 (2011) 1239-1242.

DOI: 10.1016/j.radmeas.2011.04.031

Google Scholar

[91] R.T. Devine, M. Moscovitch and P.K. Blake, The US Naval Dosimetry Center Thermoluminescence Dosimetry System, Radiat. Prot. Dosim. 30 (1990) 231-236.

Google Scholar

[92] M. Moscovitch, Personnel dosimetry using LiF:Mg,Cu,P, Radiat. Prot. Dosim. 85 (1999) 49-56.

Google Scholar

[93] J. R. Cassata, M. Moscovitch, J.E. Rotunda and K.J. Velbeck, A new paradigm in personal dosimetry using LiF:Mg,Cu,P, Radiat. Prot. Dosim. 101 (2002) 27-42.

DOI: 10.1093/oxfordjournals.rpd.a005983

Google Scholar

[94] M. Moscovitch, J. T. St. John, J.R. Cassata, P. K. Blake, J.E. Rotunda, M. Ramlo, K.J. Velbeck and L.Z. Luo, The application of LiF:Mg,Cu,P to large scale personnel dosimetry: current status and future directions, Radiat. Prot. Dosim. 119 (2006) 248-254.

DOI: 10.1093/rpd/nci692

Google Scholar

[95] L.A. DeWerd, J.R. Cameron, D.K. Wu, T. Papini and I.J. Das, Characterisation of a new dosemeter material;LiF(Mg,Cu,P), Radiat. Prot. Dosim. 6 (1983) 350-352.

DOI: 10.1093/oxfordjournals.rpd.a082948

Google Scholar

[96] B. C. Bhatt, S.S. Shinde and R.C. Bhatt, Comparative dosimetric studies of three LiF phosphors, Radiat. Prot. Dosim. 27 (1989) 21-27.

Google Scholar

[97] A.S. Pradhan and R.C. Bhatt, Thermoluminescence response of LiF(Mg,Cu,P) and LiFTLD-100 to thermal neutrons, 241Am alpha and gamma rays, Radiat. Prot. Dosim. 27 (1989) 185-188.

Google Scholar

[98] J.-L. Kim, B.-H. Kim, S.-Y. Chang and J.-K. Lee, Comparison of TLD Algorithms by Monochromatic Fluorescent Radiation and Continuous Spectrum X Rays, Radiat. Prot. Dosim. 101 (2002) 217-220.

DOI: 10.1093/oxfordjournals.rpd.a005970

Google Scholar

[99] J.H. Schulman, R.D. Kirk, E.J. West, Use of lithium borate for thermoluminescence dosimetry, Proceedings of the International Conference on Luminescence Dosimetry, Stanford University, CONF-650637, 1967, pp.113-118.

Google Scholar

[100] M. Prokic, Progress in thermoluminescence dosimetry at The Institute of Nuclear Sciences, Vinca, Radiat. Prot. Dosim. 33 (1990) 99-102.

DOI: 10.1093/oxfordjournals.rpd.a080766

Google Scholar

[101] O. Annalakshmi, M.T. Jose and G. Amarendra, Dosimetric characteristics of manganese doped lithium tetraborate – An improved TL phosphor, Radiat. Meas. 46 (2011) 669- 675.

DOI: 10.1016/j.radmeas.2011.06.016

Google Scholar

[102] M. Takenaga, O. Yamamoto, T. Yamashita, A new TLD phosphor based on Li2B4O7, Proc. 5th. Intl. Conf. on Luminescence Dosimetry, Sao Paulo, Brazil, (Ed.) A. Scharmann, (1977), pp.148-154.

Google Scholar

[103] A.S. Pradhan, R.C. Bhatt, K.G. Vohra, Some preparation parameters of Li2B4O7:Cu TLD phosphor, Radiochem. Radioanal. Lett. 52(2) (1982) 103-110.

Google Scholar

[104] M. Prokic, Lithium borate solid TL detectors, Radiat. Meas. 33 (2001) 393-396.

DOI: 10.1016/s1350-4487(01)00039-7

Google Scholar

[105] C. Furetta, M. Prokic, R. Salamon, V. Prokic, G. Kitis, Dosimetric characteristics of tissue equivalent thermoluminescent solid TL detectors based on lithium borate, Nucl. Instrum. Meth. Phys. Res. A 456 (2001) 411- 417.

DOI: 10.1016/s0168-9002(00)00585-4

Google Scholar

[106] M. Prokic, Dosimetric characteristics of Li2B4O7:Cu,Ag,P solid TL detectors, Radiat. Prot. Dosim. 100 (2002) 265-268.

DOI: 10.1093/oxfordjournals.rpd.a005863

Google Scholar

[107] Babita Tiwari, N.S. Rawat, D.G. Desai, S.G. Singh, M.Tyagi, P.Ratna, S.C. Gadkari, M.S. Kulkarni, Thermoluminescence studies on Cu-doped Li2B4O7 single crystals, J. Lumin.130 (2010) 2076–2083.

DOI: 10.1016/j.jlumin.2010.05.030

Google Scholar

[108] N.S. Rawat, M.S. Kulkarni, M. Tyagi, P. Ratna, D.R. Mishra, S.G. Singh, B. Tiwari, A. Soni, S.C. Gadkari, S.K. Gupta, TL and OSL studies on lithium borate single crystals doped with Cu and Ag, J. Lumin. 132 (2012) 1969-1975.

DOI: 10.1016/j.jlumin.2012.03.008

Google Scholar

[109] M. Martini, F. Meinardi, L. Kovács and K. Polgar, Spectrally Resolved Thermoluminescence of Li2B4O7:Cu Single Crystals, Radiat. Prot. Dosim. 65 (1996) 343-346.

DOI: 10.1093/oxfordjournals.rpd.a031657

Google Scholar

[110] B.M. Rzyski and S.P. Morato, Luminescence studies of rare earth doped lithium tetraborate, Nucl. Instrum. Meth. 175 (1980) 62-64.

DOI: 10.1016/0029-554x(80)90254-2

Google Scholar

[111] L. Singh, Vibha Chopra, S.P. Lochab,Synthesis and characterization of thermoluminescent Li2B4O7 nanophosphor, J. Lumin. 131 (2011) 1177-1183.

DOI: 10.1016/j.jlumin.2011.02.035

Google Scholar

[112] G.D. Patra, S.G. Singh, B.Tiwari, S.Sen, D.G. Desai, S.C. Gadkari, Thermally stimulated luminescence process in copper and silver co-doped lithium tetraborate single crystals and its implication to dosimetry, J. Lumin. 137 (2013) 28-31.

DOI: 10.1016/j.jlumin.2012.12.007

Google Scholar

[113] A.R. Lakshmanan, B. Chandra and R.C. Bhatt, Dosimetry Characteristics of Thermoluminescent Li2B407:Cu Phosphor, Radiat. Prot. Dosim. 1 (1981) 191-198.

Google Scholar

[114] A.R. Lakshmanan, B. Chandra and R.C. Bhatt, Further Studies on the Radiation Dosimetry Characteristics of Thermoluminescent Li2B4O7:Cu Phosphor, Radiat. Prot.Dosim. 2 (1982) 231-239.

DOI: 10.1093/oxfordjournals.rpd.a080588

Google Scholar

[115] V.A. Kazanskaya, V.V. Kuzmin, E.E. Minaeva, A.d. Sokolov, Magnesium borate radiothermoluminescent detectors, In: Proc. 4th. Intl. Conf. on Lumin. Dosimetry, Krakow, Poland, (1974) pp.581-592.

Google Scholar

[116] A.R. Lakshmanan, Bhuwan Chandra, A.S. Pradhan and R.C. Bhatt, Development of MgB4O7:Dy TLD phosphor, Radiochem. Radioanal. Lett. 37 (1979) 377-382.

Google Scholar

[117] M. Prokic, New sintered thermoluminescent dosimeters for personnel and environmental dosimetry, Health Phys. 42 (1982) 849-855.

DOI: 10.1097/00004032-198206000-00010

Google Scholar

[118] G. Kitis, C. Furetta, M. Prokic, V. Prokic, Kinetic parameters of some tissue equivalent thermoluminescent materials, J. Phys. D: Appl. Phys. 33 (2000) 1252-1262.

DOI: 10.1088/0022-3727/33/11/302

Google Scholar

[119] M. Prokic, Individual monitoring based on magnesium borate, Radiat. Prot. Dosim. 125(2007) 247-250.

Google Scholar

[120] M. Prokic, MgB4O7:Mn as a new TL dosemeter, Radiat. Prot. Dosim. 47 (1993) 191-193.

DOI: 10.1093/oxfordjournals.rpd.a081730

Google Scholar

[121] M. Prokic, Optimization of magnesium borate thermoluminescent material for radiation protection dosimetry, http://www.irpa.net/irpa9/cdrom/VOL.4/V4_120.PDF,Vienna, April 14-19, 1996, pp.4-298.

Google Scholar

[122] C. Furetta, M. Prokic, R. Salamon, G. Kitis, Dosimetric characterisation of a new production of MgB4O7:Dy,Na thermoluminescent material, Appl. Radiat. Isot. 52 (2000) 243-250.

DOI: 10.1016/s0969-8043(99)00124-4

Google Scholar

[123] L.L. Campos and O.O. Fernandes Filho, Thermoluminescent characterization of MgB4O7:Dy sintered pellets, Radiat. Prot. Dosim. 33 (1990) 111-113.

DOI: 10.1093/rpd/33.1-4.111

Google Scholar

[124] M.R. Rao, B.S. Rao, K. Somaiah and K.V.R. Murthy, Thermoluminescent characteristics of MgB4O7, MgB4O7:Mn and MgB4O7:Cu phosphors, Ind. J. Pure Appl. Phys. 47 (2009) 456-458.

Google Scholar

[125] O. Annalakshmi, M.T. Jose, U. Madhusoodanan, B. Venkatraman, G. Amarendra, Synthesis and thermoluminescence characterization of MgB4O7:Gd,Li, Radiat. Meas. (2013) (Accepted manuscript).(

Google Scholar

[126] Y. Fukuda, K. Mizuguchi and N. Takeuchi, Thermoluminescence in sintered CaB4O7:Dy and CaB4O7:Eu, Radiat. Prot. Dosim. 17 (1986) 397- 401.

DOI: 10.1093/oxfordjournals.rpd.a079846

Google Scholar

[127] E. Tekin (Ekdal), A. Ege, T. Karali, P.D. Townsend, M. Prokić, Thermoluminescence studies of thermally treated CaB4O7:Dy, Radiat. Meas. 45 (2010) 764-767.

DOI: 10.1016/j.radmeas.2010.04.009

Google Scholar

[128] C. Furetta, C. Bacci, B. Rispoli, C. Sanipoli and A. Scacco, Luminescence and Dosimetric Performances of KMgF3 Crystals Doped with Metal Impurity Ions, Radiat. Prot. Dosim. 33 (1990) 107-110.

DOI: 10.1093/oxfordjournals.rpd.a080768

Google Scholar

[129] S. V. Moharil, S. J. Dhoble, S. M. Dhopte, P. L. Muthal, V. K. Kondawar, Preparation and characterization of KMgF3:Eu phosphor, Radiat. Eff. Def. Solids 138 (1996) 159-166.

DOI: 10.1080/10420159608211518

Google Scholar

[130] C. Bacci, S. Fioravanti, C. Furetta, M. Missouri, G. Ramogida, R. Rossetti, C. Sanipoli and A. Scacco, Photoluminescence and Thermally Stimulated Luminescence in KMgF3:Eu2+ Crystals, Radiat. Prot. Dosim. 47 (1993) 277-280.

DOI: 10.1093/rpd/47.1-4.277

Google Scholar

[131] G. Kitis, C. Furetta, C. Sanipoli and A. Scacco, Thermoluminescence Properties of KMgF3 Doped with Pb, Cr and Ag, Radiat. Prot. Dosim. 65 (1996) 93-96.

DOI: 10.1093/oxfordjournals.rpd.a031690

Google Scholar

[132] G. Kitis, C. Furetta, C. Sanipoli, and A. Scacco, KMgF3:Ce, an ultra-high sensitivity thermoluminescent material, Radiat. Prot. Dosim. 82 (1999) 151–152.

DOI: 10.1093/oxfordjournals.rpd.a032617

Google Scholar

[133] N. J. M. Le Masson, A. J. J. Bos, C. W. E. Van Eijk, C. Furetta and J. P. Chaminade, Optically and thermally stimulated luminescence of KMgF3:Ce3+ and NaMgF3:Ce3+, Radiat. Prot. Dosim. 100 (2002) 229-34.

DOI: 10.1093/oxfordjournals.rpd.a005853

Google Scholar

[134] C. Furetta, F. Santopietro, C. Sanipoli, G. Kitis, Thermoluminescent (TL) properties of the perovskite KMgF3 activated by Ce and Er impurities, Appl. Radiat. Isot. 55 (2001) 533- 542.

DOI: 10.1016/s0969-8043(01)00085-9

Google Scholar

[135] U. Madhusoodanan, M.T. Jose, R. Indira, T.K. Gundu Rao, Luminescence studies in KMgF3:Eu, Ag, Indian J. Pure Appl. Phys. 47 (2009) 459-460.

Google Scholar

[136] G. Kitis, C. Furetta and C. Sanipoli, Thermoluminescence properties of LiMgF3 doped with Ce, Er and Dy, Radiat. Prot. Dosim. 100 (2002) 247- 50.

DOI: 10.1093/oxfordjournals.rpd.a005858

Google Scholar

[137] R. Bernal, K. R. Alday-Samaniego, C. Furetta, E. Cruz-Zaragoza, G. Kitis, F. Brown and C. Cruz-Vázquez, Thermoluminescence characterization of LiMgF3:DyF3 phosphors exposed to beta radiation, Radiat. Eff. Def. Sol. 162 (2007) 699-708.

DOI: 10.1080/10420150701482030

Google Scholar

[138] B. C. Bhatt, B. S. Dhabekar, S. S. Sanaye, S. S. Shinde, S. V. Moharil and T. K. Gundu Rao, Preparation, Dosimetric Characterisation and Investigation of Related TSL Defect Centres in Li3PO4:Mg,Cu Phosphor, Radiat. Prot. Dosim. 100 (2002) 251-253.

DOI: 10.1093/oxfordjournals.rpd.a005860

Google Scholar

[139] Manveer Singh, P.D. Sahare, Pratik Kumar, Synthesis and Dosimetry Characteristics of a New High Sensitivity TLD Phosphor NaLi2PO4:Eu3+, Radiat. Meas. (Accepted manuscript).

DOI: 10.1016/j.radmeas.2013.10.002

Google Scholar

[140] G. A. Aghalte, S. K. Omanwar, and S. V. Moharil, Luminescence characteristics of LiCaAlF6:Eu phosphor, Phys. Stat. Sol. (a) 204 (2007) 1561–1566.

DOI: 10.1002/pssa.200622397

Google Scholar

[141] S. J. Dhoble, S.P. Pappalwar and N.S. Dhoble, Li-based phosphors for thermoluminescence dosimetry, In: "Radiation Synthesis of Materials and Compounds", (Eds.) B. I. Kharisov, O. V. Kharissova, U. O. Mendez, CRC Press (Taylor and Francis), (2013), pp.147-192.

Google Scholar

[142] S.J. Dhoble, S.P. Puppalwar, N.S. Dhoble and A.K. Mohanty, One step synthesis of Cu+ activated Li2BPO5 low Z phosphor for thermoluminescence dosimetry, Indian. J. Pure and Appl. Phys. 50 (2012) 520-523.

Google Scholar

[143] B. Dhabekar, S.N. Menon, E. Alagu Raja, A.K. Bakshi, A.K. Singh, M.P. Chougaonkar, Y. S. Mayya, LiMgPO4:Tb,B - A new sensitive OSL phosphor for dosimetry, Nucl. Instrum. Meth. Phys. Res. B 269 (2011) 1844–1848.

DOI: 10.1016/j.nimb.2011.05.001

Google Scholar

[144] S.R. Anishia, M.T. Jose, O.Annalakshmi, V.Ponnusamy, V.Ramasamy, Dosimetric properties of rare earth doped LiCaBO3 thermoluminescence phosphors, J. Lumin. 130 (2010) 1834–1840.

DOI: 10.1016/j.jlumin.2010.04.019

Google Scholar

[145] S.R. Anishia, M.T. Jose, O.Annalakshmi, V.Ramasamy, Thermoluminescence properties of rare earth doped lithium magnesium borate phosphors, J.Lumin. 131 (2011) 2492-2498.

DOI: 10.1016/j.jlumin.2011.06.019

Google Scholar

[146] K.N. Shinde and S.J. Dhoble, Thermoluminescence and photoluminescence in the NaCaPO4:Dy3+ phosphor, Radiat. Prot. Dosim. 152 (2012) 463-467.

DOI: 10.1093/rpd/ncs074

Google Scholar

[147] S.D. More, S.P. Wankhede, M. Kumar, G. Chourasiya and S.V. Moharil, Synthesis and dosimetric characterization of LiCaPO4:Eu phosphor, Radiat.Meas. 46 (2011) 196-198.

DOI: 10.1016/j.radmeas.2010.11.001

Google Scholar

[148] K. Ayyangar, A. R. Lakshmanan, Bhuwan Chandra, and K. Ramadas, A Comparison of Thermal Neutron and Gamma Ray Sensitivities of Common TLD Materials, Phys. Med. Biol. 19 (1974) 665- 676.

DOI: 10.1088/0031-9155/19/5/007

Google Scholar

[149] T. Toryu, H. Sakamoto, N. Kotera, H. Yumada, Compositions dependency of thermoluminescence of new phosphors for radiation dosemetry. In Proceedings of the International Conference on Luminescence, Leningrad, USSR, 1973, p.685–689.

DOI: 10.1007/978-1-4684-2043-2_93

Google Scholar

[150] A.R. Lakshmanan and K.G. Vohra, Gamma radiation induced sensitization and photo- transfer in Mg2SiO4:Tb TLD phosphor, Nucl. Instrum. Meth. 159 (1979) 585-592.

DOI: 10.1016/0029-554x(79)90691-8

Google Scholar

[151] A.R. Lakshmanan, S.S. Shinde, and R.C. Bhatt, Ultraviolet-induced thermoluminescence and phosphorescence in Mg2SiO4:Tb, Phys. Med. Biol. 23 (1978) 952-960.

DOI: 10.1088/0031-9155/23/5/011

Google Scholar

[152] A.R. Lakshmanan and R.C. Bhatt, Photon energy dependence of sensitized TLD phosphors, Nucl. Instrum. Meth. 171(1980) 259-263.

DOI: 10.1016/0029-554x(80)90499-1

Google Scholar

[153] J. S. Jun and K. Becker, TLD with terbium-activated magnesium orthosilicate, Health Phys. 28 (1975) 459-461.

Google Scholar

[154] B. D. Bhasin, R. Sasidharan and C. M. Sunta, Preparation and thermoluminescent characteristics of terbium doped magnesium orthosilicate phosphor, Health Phys. 30 (1976) 139-42.

DOI: 10.1097/00004032-197601000-00016

Google Scholar

[155] T. Nakajima, Magnesium silicate, In: Thermoluminescent materials, D.R. Vij (Ed.), PTR Prentice Hall, Englewood Cliffs, New Jersey, (1993), pp.322-336.

Google Scholar

[156] T. Yamashita, N. Nada, H. Onishi, and S. Kitamura, Calcium sulphate activated by rare earth, In: Proc. Second Int. Conf. on Luminescence Dosimetry, Tennessee, USA, Sept. 23- 26, 1968, CONF 680920, (Eds.) J. A. Auxier, K. Becker, E. M. Robinson (1968), pp.4-17.

Google Scholar

[157] M. Prokic, Improvement of the thermoluminescence properties of the non-commercial dosimetry phosphors CaSO4:Dy and CaSO4:Tm, Nucl. Instrum. Meth. 151(1978) 603-608.

DOI: 10.1016/0029-554x(78)90176-3

Google Scholar

[158] Bhuwan Chandra and R.C. Bhatt, Effect of dysprosium concentration on the characteristics of CaSO4:Dy phosphor, Nucl. Instrum. Meth. 164 (1979) 571-577.

DOI: 10.1016/0029-554x(79)90096-x

Google Scholar

[159] J. Azorin, R. Salvi, A. Moreno, Improvement in the preparation of CaSO4:Dy as a TL dosimeter, Nucl. Instrum. Meth. 175 (1980) 81-82.

DOI: 10.1016/0029-554x(80)90261-x

Google Scholar

[160] I. Kasa, Dependence of Thermoluminescence Response of CaSO4:Dy and CaSO4:Tm on Grain Size and Activator Concentration, Radiat. Prot. Dosim. 33 (1990) 299-302.

DOI: 10.1093/oxfordjournals.rpd.a080815

Google Scholar

[161] S.-H. Li and P.-C. Hsu, The Role of Annealing: Effect on CaSO4:Dy Phosphor with Manganese and Sodium Impurities, Radiat. Prot. Dosim. 33 (1990) 147- 150.

DOI: 10.1093/rpd/33.1-4.147

Google Scholar

[162] A.R. Lakshmanan, photoluminescence and thermostimulated luminescence processes in rare-earth-doped CaSO4 phosphors, Progr. Mater. Sci. 44 (1999) 1-187.

DOI: 10.1016/s0079-6425(99)00003-1

Google Scholar

[163] A.R. Lakshmanan, M. T. Jose and O. Annalakshmi, High-sensitive CaSO4: thermoluminescent phosphor synthesis by co-precipitation technique, Radiat. Prot. Dosim. 132 (2008) 42-50.

DOI: 10.1093/rpd/ncn215

Google Scholar

[164] T. Rivera, J. Romana, J. Azorin, R. Sosa, J. Guzman, A.K. Serrano, M. Garcia, G. Alarcon, Preparation of CaSO4:Dy by precipitation method to gamma radiation dosimetry, Appl. Radiat. Isot. 68 (2010) 623–625.

DOI: 10.1016/j.apradiso.2009.09.033

Google Scholar

[165] G.S. Rao, R.K. Iyer, Y.W. Gokhale, S.K. Gupta, S.G. Deshpande and S.S. Gupta, Preparation of CaSO4:Dy phosphor, Bhabha Atomic Research Centre, Report No. BARC/I-591 (1980).

Google Scholar

[166] C.M. Sunta, A review of thermoluminescence of calcium fluoride, calcium sulphate and calcium carbonate, Radiat. Prot. Dosim. 8 (1984) 25-44.

DOI: 10.1093/oxfordjournals.rpd.a083041

Google Scholar

[167] J. Azorin and A. Gutierrez, Preparation and performance of a CaSO4:Dy/Tm thermoluminescent phosphor for long-term gamma measurements, Health Phys. 56 (1989) 551-559.

Google Scholar

[168] M.S. Atone, S.V. Moharil and T.K. Gundu Rao, Effective co-dopants for CaSO4:Dy and CaSO4:Tm, J. Phys. D:Appl. Phys. 28 (1995) 1263-1267.

DOI: 10.1088/0022-3727/28/6/032

Google Scholar

[169] M.S. Atone, S.J. Dhoble, S.V. Moharil, S.M. Dhopte, P.L. Muthal, V.K. Kondawar, Sensitization of luminescence of CaSO4:Dy, Phys. Stat. Sol.(a) 135 (1993) 299-305.

DOI: 10.1002/pssa.2211350127

Google Scholar

[170] U. Madhusoodanan, M.T. Jose, A. Tomita, A.R. Lakshmanan, New thermostimulated luminescence phosphors based on CaSO4 : Ag, RE, J. Lumin. 87-89 (2000) 1300 -1302.

DOI: 10.1016/s0022-2313(99)00598-0

Google Scholar

[171] M T Jose, U Madhusoodanan and A R Lakshmanan, Influence of (group IIB) codopants on the thermostimulated luminescence sensitivity of CaSO4:Dy/Tm, J. Phys. D: Appl. Phys. 4 (2001) 717-721.

DOI: 10.1088/0022-3727/34/5/309

Google Scholar

[172] S.J. Dhoble, S.V. Moharil, S.M. Dhopte, P.L. Muthal and V.K. Kondawar, Preparation and characterization of the K3Na(SO4)2:Eu, Phys. Stat. Sol.(a) 135 (1993) 289-297.

DOI: 10.1002/pssa.2211350126

Google Scholar

[173] P. D. Sahare and S. V. Moharil, A new high-sensitivity phosphor for thermoluminescence dosimetry, J. Phys. D: Appl. Phys. 23 (1990) 567-570.

DOI: 10.1088/0022-3727/23/5/015

Google Scholar

[174] S. C. Gedam, S. J. Dhoble, S. K. Omanwar and S. V. Moharil, TL in halosulphate phosphors prepared by wet chemical method, Eur. Phys. J. Appl. Phys. 39 ( 2007) 39-43.

DOI: 10.1051/epjap:2007108

Google Scholar

[175] S. C.Gedam and S.J. Dhoble, Luminescence and evaluation of trapping parameters in NaMgSO4Cl:X (X = Cu or Ce) phosphor, J. Lumin. 132 (2012) 2670-2677.

DOI: 10.1016/j.jlumin.2012.04.051

Google Scholar

[176] S.C. Gedam, S.J. Dhoble, R.B. Pode, 5D0-7F1 and 5D0- 7F2 transition in europium doped halosulphates for mercury-free lamps, J. Lumin. 132 (2012) 2693–2696.

DOI: 10.1016/j.jlumin.2012.04.004

Google Scholar

[177] G. Portal, Preparation and properties of principal TL products, In: Applied Thermoluninescence Dosimetry, (Eds.) M. Oberhofer and Scharmann, Adam Hilger, Bristol, 1981, pp.97-122.

Google Scholar

[178] W. Binder and J.R. Cameron, Dosimetric properties of CaF2:Dy, Health Phys. 17 (1969) 613-618.

DOI: 10.1097/00004032-196910000-00010

Google Scholar

[179] A.C. Lucas and B.M. Kapser, The thermoluminescence of thulium doped calcium fluoride, Proc. 5th. Intl. Conf. on Luminescence Dosimetry, Sao Paulo, Brazil, (Ed.) A. Scharmann, 1977, pp.131-139.

Google Scholar

[180] W. Hoffmann, G. Moller, H. Blattmann and M. Salzmann, Pion dosimetry with thermoluminescent materials, Phys. Med. Biol. 25(1980) 913-921.

DOI: 10.1088/0031-9155/25/5/009

Google Scholar

[181] B.C. Bhatt, S.S. Shinde, P.S. Iyer and K.S.V. Nambi, Relative Efficiencies of TL Peaks for Alpha and Beta Radiations in Fine Grains of High Z Phosphors, Radiat. Prot. Dosim. 62 (1995) 175-178.

DOI: 10.1093/oxfordjournals.rpd.a082841

Google Scholar

[182] W. Hoffmann, TL Dosimetry in High LET Radiotherapeutic Fields, Radiat. Prot. Dosim. 66(1996)243-248.

DOI: 10.1093/oxfordjournals.rpd.a031727

Google Scholar

[183] A.S. Pradhan, J. Rassow and W. Hoffmann, Fast Neutron Responses of CaF2:Tm Teflon TLD Discs of Different Thicknesses, Radiat. Prot. Dosim. 15 (1986) 233-236.

DOI: 10.1093/oxfordjournals.rpd.a079696

Google Scholar

[184] A. R. Lakshmanan, Bhuwan Chandra and R. C. Bhatt, Estimation of Quality and Intensity of Low Energy Photon Radiation using a Single Sample of CaF2:Tm, Int. J. Appl. Radiat. Isot. 33 (1982) 703- 706.

DOI: 10.1016/0020-708x(82)90087-4

Google Scholar

[185] K. Prokert and M. Sommer, A new hypersensitive thermoluminophor based on CaF2, Radiat. Prot. Dosim. 78 (1998) 249-256.

DOI: 10.1093/oxfordjournals.rpd.a032357

Google Scholar

[186] S. K. Mehta and S. Sengupta, Gamma dosimetry with Al2O3 thermoluminescent phosphor, Phys. Med. Biol. 21 (1976) 955.

DOI: 10.1088/0031-9155/21/6/006

Google Scholar

[187] M. Osvay and T. Biro, Aluminium oxide, In:, Applied Thermoluninescence Dosimetry (Eds.) M. Oberhofer and Scharmann, Adam Hilger, Bristol, 1981, pp.243-263.

Google Scholar

[188] G. Portal, S. Lorrain, Very deep traps in Al2O3 and CaSO4 : Dy, Nucl. Instrum. Meth. 175 (1980) 12-14.

DOI: 10.1016/0029-554x(80)90235-9

Google Scholar

[189] P. Pokorny and A. Ibarra, On the origin of the thermoluminescence of A12O3:Cr,Ni, J. Phys.: Condens. Matter 5 (1993) 7387-7396.

DOI: 10.1088/0953-8984/5/40/013

Google Scholar

[190] A.C. Lucas and B. K. Lucas, High dose TL response of Al2O3 single crystals, Radiat. Prot. Dosim. 85 (1999) 455–458.

DOI: 10.1093/oxfordjournals.rpd.a032896

Google Scholar

[191] G. Scarpa, Dosimetric use of beryllium oxide as a thermoluminescent material- A preliminary study, Phys. Med. Biol. 15 (1970) 667-672.

DOI: 10.1088/0031-9155/15/4/006

Google Scholar

[192] K.W. Crase and R.B. Gammage, Improvements in the use of ceramic BeO for TLD, Health Phys. 29 (1975) 739-746.

DOI: 10.1097/00004032-197511000-00014

Google Scholar

[193] L. Lembo, G. Scarpa, Beryllium oxide, In: Thermoluminescent materials, D.R. Vij ( Ed.), PTR Prentice Hall, Englewood Cliffs, New Jersey, 1993, pp.264-280.

Google Scholar

[194] G. Busuoli, L. Lembo, R. Nanni and I. Sermenghi, Use of BeO in Routine Personnel Dosimetry, Radiat. Prot. Dosim. 6 (1983) 317-320.

DOI: 10.1093/rpd/6.1-4.317

Google Scholar

[195] M. Sommer, A. Jahn, J. Henniger, A new personal dosimetry system for HP(10) and HP(0.07) photon dose based on OSL-dosimetry of beryllium oxide, Radiat. Meas. 46 (2011) 1818-21.

DOI: 10.1016/j.radmeas.2011.07.002

Google Scholar

[196] Y. Okamoto, S. Kawaguchi, S. Kino, S. Miono, T. Kitajima, A. Misaki, T. Saito, Thermoluminescent sheets for the detection of high energy hadronic and electromagnetic showers, Nucl. Instrum. Meth. Phys. Res. A 243 (1986) 219-224.

DOI: 10.1016/0168-9002(86)90845-4

Google Scholar

[197] J. Azorin, C. Furetta, A. Gutierrez, P. Gonzalez, Thermoluminescence Characteristics of BaSO4: Eu, Appl. Radiat. Isot. 42 (1991) 861-863.

Google Scholar

[198] B.C. Bhatt, S.S. Sanaye, S.S. Shinde, J.K. Srivastava, A comparative study of the dosimetric characteristics of BaSO4: Eu and CaSO4:Dy Teflon TLD discs, Radiat. Prot. Dosim. 69 (1997) 105-110.

DOI: 10.1093/oxfordjournals.rpd.a031890

Google Scholar

[199] O. Annalakshmi, M. T. Jose and U. Madhusoodanan, Synthesis and characterisation of BaSO4:Eu thermoluminescence phosphor, Radiat. Prot. Dosim. 150 (2012) 127-133.

DOI: 10.1093/rpd/ncr379

Google Scholar

[200] V.S. Kortov, Nanophosphors and outlooks for their use in ionizing radiation detecion, Radiat. Meas. 45 (2010) 512–515.

DOI: 10.1016/j.radmeas.2009.11.009

Google Scholar

[201] Numan Salaha, P.D. Sahare, S.P. Lochab, Pratik Kumar, TL and PL studies on CaSO4: Dy nanoparticles, Radiat. Meas. 41 (2006) 40- 47.

DOI: 10.1016/j.radmeas.2005.07.026

Google Scholar

[202] Numan Salaha, P.D. Sahare, A.A. Rupasov, Thermoluminescence of nanocrystalline LiF: Mg, Cu, P, J. Lumin. 124 (2007) 357–364.

DOI: 10.1016/j.jlumin.2006.04.004

Google Scholar

[203] Numan Salah, S.S. Habib, Z.H. Khan, S. Al-Hamedi, S.P. Lochab, Nanoparticles of BaSO4:Eu for heavy-dose measurements, J. Lumin. 129 (2009) 192–196.

DOI: 10.1016/j.jlumin.2008.09.012

Google Scholar

[204] S. P. Lochab, D. Kanjilal, Numan Salah, Sami S. Habib, Jyoti Lochab, Ranju Ranjan, V. E. Aleynikov, A. A. Rupasov, and A. Pandey, Nanocrystalline Ba0.97Ca0.03SO4 :Eu for ion beams dosimetry, J. Appl. Phys. 104 (2008) 033520 - 4.

DOI: 10.1063/1.2955459

Google Scholar

[205] P.D. Sahare, J.S. Bakare, S.D. Dhole, N.B. Ingale, A.A. Rupasov, Synthesis and luminescence properties of nanocrystalline LiF:Mg,Cu,P phosphor, J. Lumin. 130 (2010) 258–265.

DOI: 10.1016/j.jlumin.2009.08.018

Google Scholar

[206] L. G. Jacobsohn, M. W. Blair, S. C. Tornga, L. O. Brown, B. L. Bennett, and R. E. Muenchausen,Y2O3 :Bi nanophosphor: Solution combustion synthesis, structure, and luminescence, J. Appl. Phys.104 (2008) 124303-7.

DOI: 10.1063/1.3042223

Google Scholar

[207] M. Zahedifar, M. Mehrabi, S. Harooni, Synthesis of CaSO4:Mn nanosheets with high thermoluminescence sensitivity, Appl. Radiat. Isot. 69 (2011) 1002–1006.

DOI: 10.1016/j.apradiso.2011.01.036

Google Scholar

[208] M. Zahedifar, M. Mehrabi, Thermoluminescence and photoluminescence of cerium doped CaSO4 nanosheets, Nucl. Instrum. Meth. Phys. Res. B 268 (2010) 3517–3522.

DOI: 10.1016/j.nimb.2010.08.014

Google Scholar

[209] M.Benabdesselam, P. Iacconi, D. Briand, D. Lapraz and J.E. Butler, Selected Thermoluminescent Properties in CVD Diamond Film, Radiat. Prot. Dosim. 84 (1999) 257-60.

DOI: 10.1093/oxfordjournals.rpd.a032732

Google Scholar

[210] J. Morales, R. Bernal, C. Cruz-Vazquez, E. G. Salcido-Romero and V. M. Castaño, Thermoluminescence of Tequila-based nanodiamond, Radiat. Prot. Dosim. 139 (2010) 580-583.

DOI: 10.1093/rpd/ncp292

Google Scholar

[211] M.S. Akselrod and S.W.S. McKeever, A radiation dosimetry method using pulsed optically stimulated luminescence, Radiat. Prot. Dosim. 81(1999) 167-175.

DOI: 10.1093/oxfordjournals.rpd.a032583

Google Scholar

[212] M.S. Akselrod, L. Botter-Jensen, S.W.S. McKeever, Optically stimulated luminescence and its use in medical dosimetry, Radiat. Meas. 41 (2007) S78-S99.

DOI: 10.1016/j.radmeas.2007.01.004

Google Scholar

[213] L.Botter-Jensen, S.W.S. McKeever, and A.G. Wintle (Eds.), Optically Stimulated Luminescence dosimetry, Elsevier, Oxford (2003).

DOI: 10.1016/b978-044450684-9/50091-x

Google Scholar

[214] E.G. Yukihara, and S.W.S. McKeever (Eds.), Optically Stimulated Luminescence: Fundamentals and Applications, Wiley ( 2011).

Google Scholar

[215] E. Piesch,  B. Burgkhardt,  M. Fischer, H.G. Röber and S. Ugi, Properties of Radiophotoluminescent Glass Dosemeter Systems Using Pulsed Laser UV Excitation, Radiat. Prot. Dosim. 17 (1986) 293- 297.

DOI: 10.1093/rpd/17.1-4.293

Google Scholar

[216] N. Juto, Glass badge dosimetry system for large scale personal monitoring, In: Proc. of AOCRP-1, Korea, Oct. 20-24, 2002, 1-7.

Google Scholar

[217] M. Ranogajec-Komor, Passive solid state dosimeters in environmental monitoring personnel monitoring, In: New Techniques for the Detection of Nuclear and Radioactive Agents, G.A. Aycik (Ed.), NATO Science for Peace and Security Series – B: Physics and Biophysics, Springer Science (2009), pp.97-111.

DOI: 10.1007/978-1-4020-9600-6_7

Google Scholar

[218] S.W.S. McKeever, M. Moscovitch, Topics under Debate - On the advantages and disadvantages of optically stimulated luminescence dosimetry and thermoluminescence dosimetry, Radiat. Prot. Dosim. 104 (2003) 263-270.

DOI: 10.1093/oxfordjournals.rpd.a006191

Google Scholar

[219] P. Olko, Advantages and disadvantages of luminescence dosimetry, Radiat. Meas. 45 (2010) 506-511.

DOI: 10.1016/j.radmeas.2010.01.016

Google Scholar

[220] B.C. Bhatt, Thermoluminescence (TL), Optically Stimulated Luminescence (OSL) and Radiophotoluminescence (RPL) Dosimetry– An Overall Perspective, Radiat. Prot. Envir. 34 (2011) 6-16.

DOI: 10.1016/j.radmeas.2013.03.004

Google Scholar

[221] International Commission on Radiological Protection, 1990 Recommendations of the International Commission on Radiological Protection, ICRP Publication 60. (Oxford: Pergamon Press) (1991).

DOI: 10.1016/s0074-27402880013-4

Google Scholar

[222] International Commission on Radiological Protection. General Principles for the Radiation Protection of Workers. ICRP Publication 75. Ann. ICRP 27 (1) (Oxford: Pergamon Press) (1997).

DOI: 10.1016/s0146-6453(97)88275-9

Google Scholar

[223] United Nations. Sources and Effects of Ionizing Radiation. Volume I: Report to the General Assembly, Scientific Annexes A and B, UNSCEAR 2008 Report. United Nations Sales and Publications E.10.XI.3 (2010).

DOI: 10.18356/a02938bf-en

Google Scholar

[224] R. Czarwinski, and M. J. Crick, Occupational exposures worldwide and revision of international standards for protection, Radiat. Prot. Dosim. 144 (2011) 2-11.

DOI: 10.1093/rpd/ncq449

Google Scholar

[225] B.C. Bhatt and M.S. Kulkarni, Worldwide status of personnel monitoring using thermoluminescent (TL), optically stimulated luminescent (OSL) and radiophotoluminescent (RPL) dosimeters, Int. J. Lumin. Appl. 3 (2013) 6-10.

Google Scholar

[226] IEC. International Electrotechnical Commission. Radiation protection instrumentation-Passive integrating dosimetry systems for personal and environmental monitoring –Part 1: General characteristics and performance requirements, IEC/CWI 62387-1, 2007.

DOI: 10.3403/30204404u

Google Scholar

[227] IEC. International Electrotechnical Commission. Radiation protection instrumentation – Passive integrating dosimetry systems for personal and environmental monitoring of photon and beta radiation, IEC 62387, Edition 1.0 2012-12, Geneva, Switzerland (2012).

DOI: 10.3403/30298347

Google Scholar

[228] K.S.V. Nambi, V.N. Bapat, M. David, V.K. Sundaram, C.M. Sunta and S.D. Soman, Country-wide environmental radiation monitoring using thermoluminescence dosemeters, Radiat. Prot. Dosimi. 28 (1987) 31-38.

DOI: 10.1093/oxfordjournals.rpd.a079881

Google Scholar

[229] K.S.V. Nambi, N.K. Mehta, A.S. Basu and S. Gopalakrishnan, Validation of environmental TLDs used in Indian nuclear programmes, Radiat. Prot. Dosim. 58 (1995) 229-231.

Google Scholar

[230] M.P. Chougaonkar, P.G. Shetty, Y.S. Mayya, V.D. Puranik, M.L. Joshi, H.S. Kushwaha Environmental Gamma Radiation Monitoring Around Nuclear Power Stations in India, an Indian Scenario. J. Nucl. Sci. and Tech. (Suppl. 5) (2008) 619-622.

DOI: 10.1080/00223131.2008.10875931

Google Scholar

[231] G.A. Klemic, N. Azziz, S.A. Marino, The Neutron Response of Al2O3:C, 7LiF:Mg,Cu,P and 7LiF:Mg,Ti TLDs, Radiat. Prot. Dosim. 65 (1996) 221-226.

DOI: 10.1093/oxfordjournals.rpd.a031627

Google Scholar

[232] F. Spurný, Enhancement of fast neutron response of some luminescent detectors due to external proton radiators, Radiat. Prot. Dosim. 9 (1984) 257-261.

DOI: 10.1093/oxfordjournals.rpd.a083105

Google Scholar

[233] E.G. Yukiharaa, J.C. Mittania, F. Vanhavere, M.S. Akselrod, Development of new optically stimulated luminescence (OSL) neutron dosimeters, Radiat Meas. 43 (2008) 309.

DOI: 10.1016/j.radmeas.2007.10.005

Google Scholar

[234] T. Kron, Applications of Thermoluminescence Dosimetry in Medicine, Radiat. Prot. Dosim. 85, (1999) 333-340.

Google Scholar

[235] A.S. Pradhan, J.I. Lee, J.L. Kim, Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications, J. Med. Phys. 33 (2008)85-99.

DOI: 10.4103/0971-6203.42748

Google Scholar

[236] D. Banerjee, L. Botter-Jensena, A.S. Murray, Retrospective dosimetry: estimation of the dose to quartz using the single-aliquot regenerative-dose protocol, Appl. Radiat. Isot. 52 (2000) 831- 844.

DOI: 10.1016/s0969-8043(99)00247-x

Google Scholar

[237] H.Y. Goksu, Telephone chip-cards as individual dosemeters, Radiat. Meas. 37 (2003) 617-620.

DOI: 10.1016/s1350-4487(03)00082-9

Google Scholar

[238] V.K. Mathur, J.H. Barkyoumb, E.G. Yukihara, H.Y. Göksu, Radiation sensitivity of memory chip module of an ID card, Radiat. Meas. 42 (2007) 43-48.

DOI: 10.1016/j.radmeas.2006.06.012

Google Scholar

[239] C. Woda, S. Greilich, K. Beerten, On the OSL curve shape and preheat treatment of electronic components from portable electronic devices, Radiat. Meas. 45 (2010) 746–748.

DOI: 10.1016/j.radmeas.2010.01.041

Google Scholar

[240] E. A. Ainsbury, E. Bakhanova, J. F. Barquinero, M. Brai, V. Chumak et al., Review of retrospective dosimetry techniques for external ionising radiation exposures, Radiat. Pro. Dosim.147 (2011) 573-592.

DOI: 10.1093/rpd/ncq499

Google Scholar

[241] A.R. Lakshmanan and R.C. Bhatt, High-level gamma-ray dosimetry using common TLD phosphors, Phys. Med. Biol. 24 (1979) 1258-67.

DOI: 10.1088/0031-9155/24/6/016

Google Scholar

[242] R.C. Bhatt and S.J. Supe, High level γ-dosimetry using CaSO4: Dy phosphor with high Dy- concentration, Int. J. Appl. Radiat. Isot. 32 (1981) 553-558.

DOI: 10.1016/0020-708x(81)90033-8

Google Scholar

[243] Bhuwan Chandra, Thermoluminescence studies on some common TL phosphors and their application in Radiation dosimetry, Ph. D. Thesis , University of Bombay, 1982 (Unpublished).

Google Scholar

[244] B. Obryk, P. Bilski and P. Olko, Method of thermoluminescent measurement of radiation doses from micro-Grays up to a mega-Gray with a single LiF:Mg,Cu,P detector, Radiat. Prot. Dosim. 144 (2011) 543-47.

DOI: 10.1093/rpd/ncq339

Google Scholar

[245] V. Kortov, Yu. Ustyantsev, Advantages and challenges of high-dose thermoluminescent detectors, Radiat. Meas . 56(2013) 299-302.

DOI: 10.1016/j.radmeas.2013.03.018

Google Scholar

[246] Anuj Soni, D.R. Mishra, B.C. Bhatt, S.K. Gupta, N.S. Rawat, M.S. Kulkarni, D.N. Sharma, Characterization of deep energy level defects in a-Al2O3:C using thermally assisted OSL, Radiat. Meas. 47(2012) 111-120.

DOI: 10.1016/j.radmeas.2011.11.009

Google Scholar

[247] S. W. S. McKeever, New Millennium Frontiers of Luminescence Dosimetry, Radiat. Meas.100 (2002) 27-32.

Google Scholar

[248] E.G. Yukihara, R. Gaza, S.W.S. McKeever, C.G. Soares, Optically stimulated luminescence and thermoluminescence efficiencies for high-energy heavy charged particle irradiation in Al2O3:C, Radiat. Meas. 38 (2004) 59-70.

DOI: 10.1016/s1350-4487(03)00251-8

Google Scholar

[249] E.G. Yukihara, G.O. Sawakuchi, S. Guduru, S.W.S. McKeever, R. Gaza, E.R. Benton, N.Yasuda,Y. Uchihori, H. Kitamura, Application of the optically stimulated luminescence (OSL) technique in space dosimetry, Radiat. Meas. 41 (2006) 1126-1135.

DOI: 10.1016/j.radmeas.2006.05.027

Google Scholar