NanoTiO2-Enriched Biocompatible Polymeric Powder Coatings: Adhesion, Thermal and Biological Characterizations

Article Preview

Abstract:

The success of orthopedic and dental implants largely depends on their biocompatibility with the surrounding body environment and the biocompatibility depends on the physical, chemical, mechanical, topographical and biological properties of the implant materials chosen. Since the last few decades, titanium and its alloys have been among the most widely used ones due to their superior biocompatibility and mechanical properties; however, pure titanium needs to be pre and/or post treated chemically or physically to maintain appropriate textures and surface roughness. In the present study, TiO2 nanoparticles incorporated polymeric powder coatings consisting of smooth and micro-nanoscale roughness were developed that exhibited biocompatibility towards Human Embryonic Palatial Mesenchymal (HEPM) Cells. In addition, an experimental set up was designed and executed to evaluate the adhesion/ bond strength of the coating and to measure the load bearing capacity that the coatings can withstand before being detached from the substrate. Coating’s topographical features were analyzed by using Scanning Electron Microscopy (SEM). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were performed to evaluate the thermal stability of the coating materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-124

Citation:

Online since:

July 2014

Export:

Price:

* - Corresponding Author

[1] M. Haneef, J.F. Rahman, M. Yunus, S. Zameer, S. Patil, T. Yezdani, Hybrid Polymer Matrix Composites for Biomedical Applications, Int. J. Modern. Eng. Res. 3(2) (2013) 970-979.

Google Scholar

[2] L. Zhao, S. Mei, P.K. Chu, Y. Zhang, Z. Wu, The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast function, Biomaterials 31 (2010) 5072-82.

DOI: 10.1016/j.biomaterials.2010.03.014

Google Scholar

[3] R. Li, K. Nie, W. Pang, Q. Zhu, Morphology and properties of organic–inorganic hybrid materials involving TiO2 and poly(Ɛ- caprolactone), a biodegradable aliphatic polyester, J. Biomed. Mater. Res. Part A 83A (2007) 114-22.

DOI: 10.1002/jbm.a.31224

Google Scholar

[4] C. Yao, D. Storey, T.J. Webster, Nanostructured metal coatings on polymers increase osteoblast attachment, Int. J. Nanomedicine 2 (2007) 487-492.

Google Scholar

[5] A. Reising, C. Yao, D. Storey, T.J. Webster, Greater osteoblast longterm functions on ionic plasma deposited nanostructured orthopedic implant coatings, J. Biomed. Mater. Res. Part A 87 (2008) 78-83.

DOI: 10.1002/jbm.a.31772

Google Scholar

[6] R.A. Pareta, A.B. Reising, T. Miller, D. Storey, T.J. Webster, An understanding of enhanced osteoblast adhesion on various nanostructured polymeric and metallic materials prepared by ionic plasma deposition, J. Biomed. Mater. Res. Part A 92 (2010) 1190-1201.

DOI: 10.1002/jbm.a.32433

Google Scholar

[7] M. Schuler, T. Kunzler, M. de Wild, C. Sprecher, D. Trentin, D. Brunette, M. Textor, S. Tosatti, Fabrication of TiO2-coated epoxy replicas with identical dual-type surface topographies used in cell culture assays, J. Biomed. Mater. Res. Part A 88A (2009) 12-22.

DOI: 10.1002/jbm.a.31720

Google Scholar

[8] R.A. Pareta, A.B. Reising, T. Miller, D. Storey, T.J. Webster, Increased endothelial cell adhesion on plasma modified nanostructured polymeric and metallic surfaces for vascular stent applications, Biotechnol. Bioeng. 103 (2009) 459-471.

DOI: 10.1002/bit.22276

Google Scholar

[9] A. Ranjan, T.J. Webster, Increased endothelial cell adhesion and elongation on micron-patterned nano-rough poly(dimethylsiloxane) films, Nanotechnology 20 (2009) 305102.

DOI: 10.1088/0957-4484/20/30/305102

Google Scholar

[10] K. Lehle, J. Buttstaedt, D.E. Birnbaum. Expression of adhesion molecules and cytokines in vitro by endothelial cells seeded on various polymer surfaces coated with titaniumcarboxonitride, J. Biomed. Mater. Res. Part A 65 (2003) 393-401.

DOI: 10.1002/jbm.a.10492

Google Scholar

[11] A. Sicilia, S. Cuesta, G. Coma, I. Arregui, C. Guisasola, E. Ruiz, A. Maestro, Titanium allergy in dental implant patients, Clin. Oral Implants Res. 19 (2008) 823-835.

DOI: 10.1111/j.1600-0501.2008.01544.x

Google Scholar

[12] N. Sykaras, A.M. Iacopino, V.A. Marker, R.G. Triplett, R.D. Woody, Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review, Int. J. Oral Maxillofac Implants 15 (2000) 675-690.

Google Scholar

[13] K. Anselme, M. Bigerelle, B. Noel, A. Iost, P. Hardouin, Effect of grooved titanium substratum on human osteoblastic cell growth, J. Biomed. Mater. Res. 60 (2002) 529-540.

DOI: 10.1002/jbm.10101

Google Scholar

[14] J. Lincks, B.D. Boyan, C.R. Blanchard, C.H. Lohmann, Y. Liu, D.L. Cochran, D.D. Dean, Z. Schwartz, Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition, Biomaterials 19 (1998) 2219-32.

DOI: 10.1016/b978-008045154-1/50019-8

Google Scholar

[15] R.G. Flemming, C.J. Murphy, G.A. Abrams, S.L. Goodman, P.F. Nealey. Effects of synthetic micro- and nano-structured surfaces on cell behavior, Biomaterials 20 (1999) 573-88.

DOI: 10.1016/s0142-9612(98)00209-9

Google Scholar

[16] C. Hallgren, H. Reimers, D. Chakarov, J. Gold, A. Wennerberg, An in vivo study of bone response to implants topographically modified by laser micromachining, Biomaterials 24 (2003) 701-710.

DOI: 10.1016/s0142-9612(02)00266-1

Google Scholar

[17] A.W. Feinberg, W.R. Wilkerson, C.A. Seegert, A.L. Gibson, L. Hoipkemeier-Wilson, A.B. Brennan, Systematic variation of microtopography, surface chemistry and elastic modulus and the state dependent effect on endothelial cell alignment, J. Biomed. Mater. Res. Part A 86 (2008) 522-534.

DOI: 10.1002/jbm.a.31626

Google Scholar

[18] C.R. Howlett, H. Zreiqat, Y. Wu, D.W. McFall, D.R. McKenzie, Effect of ion modification of commonly used orthopedic materials on the attachment of human bone-derived cells, J. Biomed. Mater. Res. 45 (1999) 345-354.

DOI: 10.1002/(sici)1097-4636(19990615)45:4<345::aid-jbm9>3.0.co;2-j

Google Scholar

[19] M. Wieland, B. Chehroudi, M. Textor, D.M. Brunette, Use of Ticoated replicas to investigate the effects on fibroblast shape of surfaces with varying roughness and constant chemical composition, J. Biomed. Mater. Res. 60 (2002) 434-444.

DOI: 10.1002/jbm.10059

Google Scholar

[20] C. Masaki, G.B. Schneider, R. Zaharias, D. Seabold, C. Stanford, Effects of implant surface microtopography on osteoblast gene expression, Clin. Oral Implants Res. 16 (2005) 650-656.

DOI: 10.1111/j.1600-0501.2005.01170.x

Google Scholar

[21] Z.M. Isa, G.B. Schneider, R. Zaharias, D. Seabold, C.M. Stanford, Effects of fluoride-modified titanium surfaces on osteoblast proliferation and gene expression, Int. J. Oral Maxillofac Implants 21 (2006) 203-211.

Google Scholar

[22] J. Protivinsky, M. Appleford, J. Strnad, A. Helebrant, J.L. Ong, Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior, Int. J. Oral Maxillofac Implants 22 (2007) 542-550.

Google Scholar

[23] M.J. Dalby, D. Giannaras, M.O. Riehle, N. Gadegaard, S. Affrossman, A.S. Curtis, Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topography, Biomaterials 25 (2004) 77-83.

DOI: 10.1016/s0142-9612(03)00475-7

Google Scholar

[24] J.K. Savaiano, T.J. Webster, Altered responses of chondrocytes to nanophase PLGA/nanophase titania composites, Biomaterials 25 (2004) 1205-1213.

DOI: 10.1016/j.biomaterials.2003.08.012

Google Scholar

[25] N.R. Washburn, K.M. Yamada, C.G. Simon Jr, S.B. Kennedy, E.J. Amis, High-throughput investigation of osteoblast response to polymer crystallinity: Influence of nanometer-scale roughness on proliferation, Biomaterials 25 (2004) 1215-1224.

DOI: 10.1016/j.biomaterials.2003.08.043

Google Scholar

[26] M. Sato, E.B. Slamovich, T.J. Webster, Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol-gel titaniumcoatings, Biomaterials 26 (2005) 1349-1357.

DOI: 10.1016/j.biomaterials.2004.04.044

Google Scholar

[27] T.J. Webster, T.A. Smith, Increased osteoblast function on PLGA composites containing nanophase titania, J. Biomed. Mater. Res. Part A 74 (2005) 677-686.

DOI: 10.1002/jbm.a.30358

Google Scholar

[28] M.J. Dalby, D. McCloy, M. Robertson, H. Agheli, D. Sutherland, S. Affrossman, R.O. Oreffo, Osteoprogenitor response to semi-ordered and random nanotopographies, Biomaterials 27 (2006) 2980-2987.

DOI: 10.1016/j.biomaterials.2006.01.010

Google Scholar

[29] F.S. Kaplan, W.C. Hayes, T.M. Keaveny, A. Boskey, T.A. Einhorn, J.P. Iannotti, Form and function of bone, in: S.R. Simon (Ed.), Orthopaedic Basic Science: American Academy of Orthopaedic Surgeons, Rosemont, IL, 1994, pp.127-185.

Google Scholar

[30] D.V. Portan, A.A. Kroustalli, D.D. Deligianni, G.C. Papanicolaou, On the biocompatibility between TiO2 nanotubes layer and human osteoblasts, J. Biomed. Mater. Res. Part A 100 (2012) 2546-53.

DOI: 10.1002/jbm.a.34188

Google Scholar

[31] P.L. Lily, L. Matthew, M.L. Eltgroth, T.J. LaTempa, C.A. Grimes, T.A. Desai, The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation, Biomaterials 30 (2009) 1268-1272.

DOI: 10.1016/j.biomaterials.2008.11.012

Google Scholar

[32] Y.W. Chun, D. Khang, K.M. Haberstroh, T.J. Webster, The role of polymer nanosurface roughness and submicron pores in improving bladder urothelial cell density and inhibiting calcium oxalate stone formation, Nanotechnology 20 (2009) 85104.

DOI: 10.1088/0957-4484/20/8/085104

Google Scholar

[33] M.S. Mozumder, J. Zhu, H. Perinpanayagam, Nano-TiO2 enriched polymeric powder coatings support human mesenchymal cell attachment and growth, J. Biomater. Appl. 26 (2011) 173-193.

DOI: 10.1177/0885328210363312

Google Scholar

[34] M.S. Mozumder, J. Zhu, H. Perinpanayagam, TiO2-enriched polymeric powder coatings support human mesenchymal cell spreading and osteogenic differentiation, Biomed. Mater. 6 (2011) 035009.

DOI: 10.1088/1748-6041/6/3/035009

Google Scholar

[35] M.S. Mozumder, J. Zhu, H. Perinpanayagam, Titania-polymeric powder coatings with nano-topography support enhanced human mesenchymal cell responses, J. Biomed. Mater. Res. Part A 100 (2012) 2695-2709.

DOI: 10.1002/jbm.a.34199

Google Scholar

[36] J. Zhu, H. Perinpanayagam, M.S. Mozumder, H. Zhang, W. Shi, Biocompatible Polymer Nanoparticle Coating Composition and Method of Production Thereof, US Patent, 20,130,059,946, 2013.

Google Scholar

[37] J. Zhu, H. Zhang, Fluidization Additives to Fine Powders, US Patent 6,833,185, 2004.

Google Scholar

[38] J. Zhu, H. Zhang, Ultrafine powder coating: An innovation, Powder Coat 16 (2005) 39-47.

Google Scholar

[39] S.A. Sadeghi-Fadaki, K. Zangeneh-Madar, Z. Valefi, The adhesion strength and indentation toughness of plasma-sprayed yttria stabilized zirconia coatings, Surf. Coat. Technol. 204 (2010) 2136-2141.

DOI: 10.1016/j.surfcoat.2009.11.035

Google Scholar

[40] M.R. Kalaee, S. Akhlaghi, A. Nouri, S. Mazinani, M. Mortezaei, M. Afshari, D. Mostafanezhad, A. Allahbakhsh, H.A. Dehaghi, A. Amirsadri, D.P. Gohari, Effect of nano-sized calcium carbonate on cure kinetics and properties of polyester/epoxy blend powder coatings. Prog. Org. Coat. 71 (2011) 173-180.

DOI: 10.1016/j.porgcoat.2011.02.006

Google Scholar

[41] S.M. Mirabedini, A. Kiamanesh, The effect of micro and nano-sized particles on mechanical and adhesion properties of a clear polyester powder coating, Prog. Org. Coat. 76 (2013) 1625-1632.

DOI: 10.1016/j.porgcoat.2013.07.009

Google Scholar

[42] A. Lafabrier, A. Fahs, G. Louarn, E. Aragon, J-F. Chailan, Experimental evidence of the interface/interphase formation between powder coating and composite material, Prog. Org. Coat. 77 (2014) 1137-1144.

DOI: 10.1016/j.porgcoat.2014.03.021

Google Scholar

[43] H.F. Mohamed, A.-H.I. Mourad, D.C. Barton, UV irradiation and aging effects on nanoscale mechanical properties of ultrahigh molecular weight polyethylene for biomedical implants, Plast. Rubber Compos. 37(8) (2008) 346-352.

DOI: 10.1179/174328908x314370

Google Scholar

[44] H.M.S. Iqbal, S. Bhowmik, R. Benedictus, J.B. Moon, C.G. Kim, A.-H.I. Mourad, Processing and characterization of space-durable high-performance polymeric nanocomposite, J. Thermophys. Heat Transfer 25(1) (2011) 87-94.

DOI: 10.2514/1.50841

Google Scholar

[45] A.-H.I. Mourad, Thermo-mechanical characteristics of thermally aged polyethylene/ polypropylene blends, Mater. Des. 31 (2010) 918-929.

DOI: 10.1016/j.matdes.2009.07.031

Google Scholar

[46] A.-H.I. Mourad, R.O. Akkad, A.A. Soliman, T.M. Madkour, Characterization of thermally treated and untreated polyethylene–polypropylene blends using DSC, TGA and IR techniques, Plast. Rubber Compos. 38(7) (2009) 265-278.

DOI: 10.1179/146580109x12473409436625

Google Scholar

[47] A. Dehbi, A.-H.I. Mourad, A. Bouaza, Degradation assessment of LDPE multilayer films used as a greenhouse cover: Natural and artificial aging impacts, J. Appl. Polym. Sci. 124 (4) (2012) 2702-2716.

DOI: 10.1002/app.34928

Google Scholar

[48] A.-H. I. Mourad, A. Dehbi, On the use of tri-layers low density polyethylene greenhouse cover as a substitute for mono-layer cover, Plastics, Rubber and Composites: Macromolecular Engineering, 43 (4) (2014) 111-121.

DOI: 10.1179/1743289814y.0000000082

Google Scholar

[49] A. Dehbi, A-H. I. Mourad, A. Bouaza, Ageing Effect on the Properties of Tri-Layer Polyethylene Film Used as Greenhouse Roof, Procedia Engineering, 10 (2011) 466-471.

DOI: 10.1016/j.proeng.2011.04.079

Google Scholar

[50] C.A. Harper, E.A. Petrie, Plastic materials and processes: A concise Encyclopedia, Wiley-Interscience, Hoboken, 2003.

Google Scholar

[51] J.W. Nicholson, The Chemistry of Polymers (4, Revised ed.), Royal Society of Chemistry. p.50. 2011.

Google Scholar

[52] N. Ozkucur, C. Wetzel, F. Hollstein, E. Richter, R.H. Funk, T.K. Monsees, Physical vapor deposition of zirconium or titanium thin films on flexible polyurethane highly support adhesion and physiology of human endothelial cells, J. Biomed. Mater. Res. Part A 89 (2009) 57-67.

DOI: 10.1002/jbm.a.32003

Google Scholar

[53] T.J. Webster, L.S. Schadler, R.W. Siegel, R. Bizios, Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin, Tissue Eng. 7 (2001) 291-301.

DOI: 10.1089/10763270152044152

Google Scholar