Effect of Strain Hardening on the Joint Efficiency of an Al-Mg-Sc-Zr Alloy Subjected to Friction Stir Welding

Article Preview

Abstract:

The microstructure and mechanical properties of friction stir welded Al-5.4Mg-0.2Sc-0.1Zr alloy were studied. Defect-free welds were produced in hot extruded, hot rolled and cold rolled initial conditions. Friction stir welding led to the formation of ultrafine-grained structure in stir zone that contributes to overall strengthening. Coherent Al3(Sc,Zr) dispersoids retain partially during welding process that provides a joint efficiency close to 100% in the hot extruded and hot rolled materials. In the cold-rolled state the joint efficiency was found to be only 64%. The relatively low weld strength of the cold rolled material was attributed to the elimination of strain hardening due to the formation of recrystallized structure. It was shown that full strength weld can be achieved in semi-finished products of Al-Mg-Sc alloys in cold-worked and stabilized states being equal to H323 and H341 tempering by friction stir welding.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

463-468

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] I.J. Polmear IJ, Light Alloys. From traditional alloys to nanocrystals. fourth ed., Butterworth-Heinemann/Elsevier, UK, 2006.

DOI: 10.1017/s000192400008670x

Google Scholar

[2] Smithells Light Metals Handbook, ed. Brandes EA, Brook GB, Butterworth-Heinemann, 1998.

Google Scholar

[3] H. Halim, D.S. Wilkinson, M. Niewczas, The Portevin-Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy, Acta Mater. 55 (2007) 4151-4160.

DOI: 10.1016/j.actamat.2007.03.007

Google Scholar

[4] O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, K. Tsuzaki, Y. Watanabe, Microstructure behavior of Al-Mg-Sc alloy processed by ECAP at elevated temperature, Acta Mater. 56 (2008) 821-834.

DOI: 10.1016/j.actamat.2007.10.029

Google Scholar

[5] R. Kaibyshev, A. Mogucheva, A. Dubyna, Strategy for achieving high strength in Al-Mg-Sc alloys by intense plastic straining, Mater. Sci. Forum 55 (2012) 706-709.

DOI: 10.4028/www.scientific.net/msf.706-709.55

Google Scholar

[6] P.L. Threadgill, A.J. Leonard, H.R. Shercliff, P.J. Withers, Friction stir welding of aluminium alloys, Inter. Mater. Rev. 54 (2009) 49-93.

DOI: 10.1179/174328009x411136

Google Scholar

[7] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R 50 (2005) 1-78.

Google Scholar

[8] R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Recent advances in friction-stir welding - Process, weldment structure and properties, Prog. Mater. Sci. 53 (2008) 980-1023.

DOI: 10.1016/j.pmatsci.2008.05.001

Google Scholar

[9] H.L. Hao, D.R. Ni, H. Huang, D. Wang, B.L. Xiao, Z.R. Nie, Z.Y. Ma, Effect of welding parameters on microstructure and mechanical properties of friction stir welded Al-Mg-Er alloy, Mater. Sci. Eng. A 559 (2013) 889-896.

DOI: 10.1016/j.msea.2012.09.041

Google Scholar

[10] R. Kapoor, N. Kumar, R.S. Mishra, C.S. Huskamp, K.K. Sankaran, Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al-Mg alloy, Mater Sci Eng A 527 (2010) 5246-5254.

DOI: 10.1016/j.msea.2010.04.086

Google Scholar

[11] A.C. Munoz, G. Ruckert, B. Huneau, X. Sauvage, S. Marya, Comparison of TIG welded and friction stir welded Al-4.5Mg-0.26Sc alloy, J. Mater. Process. Technol. 197 (2008) 337-343.

DOI: 10.1016/j.jmatprotec.2007.06.035

Google Scholar

[12] P.B. Prangnell, C.P. Heason, Grain structure formation during friction stir welding observed by the 'stop action technique', Acta Mater. 53 (2005) 3179-3192.

DOI: 10.1016/j.actamat.2005.03.044

Google Scholar

[13] Y.S. Sato, M. Urata, H. Kokawa, Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063, Metall. Mater. Trans. A 33 (2002) 625-635.

DOI: 10.1007/s11661-002-0124-3

Google Scholar

[14] M.E. van Dalen, D.N. Seidman, D.C. Dunand, Creep- and coarsening properties of Al-0.06 at.% Sc-0.06 at.% Ti at 300-450oC, Acta Mater. 56 (2008) 4369-4377.

DOI: 10.1016/j.actamat.2008.05.002

Google Scholar

[15] N. Kumar, R.S. Mishra, C.S. Huskamp, K.K. Sankaran, Critical grain size for change in deformation behavior in ultrafine grained Al-Mg-Sc alloy, Scr. Mater. 64 (2011) 576-579.

DOI: 10.1016/j.scriptamat.2010.11.051

Google Scholar