Modeling a Compact Sintering Process Based on Biomass Fuels

Article Preview

Abstract:

This paper is focused on the numerical simulation of a new technology of small size iron ore sintering machine using gaseous fuel and oxygen injections to produce high quality of sinter product for the blast furnace operation. The proposed methodology is to partially replace the solid fuel (coke breeze) by steelworks gases in a compact machine to enhance heat and mass transfer. A multiphase mathematical model based on transport equations of momentum, energy and chemical species coupled with chemical reaction rates and phase transformations is proposed to analyze the inner process parameters. A base case representing a possible actual industrial operation of the sintering machine is used in order to compare different scenarios of possible operations which represents advanced operations techniques. The model was used to predict four cases of fuel gas utilization: a) 3% of the wind boxes inflow from N01-N10 wind boxes of natural gas (NG) and oxygen, b) same condition with coke oven gas (COG) and c) mixture of 80% COG and 20% blast furnace gas (BFG). The model predictions indicated that for all cases, the sintering zone is enlarged and the solid fuel consumption is decreased about 12kg/t of sinter product for the best combination. In order to maximize the steelworks gas utilization it is recommended the use of mixture of COG and BFG with optimum inner temperature distribution within a compact sintering machine, which enhance the productivity and obviously, decrease the investment cost of the sintering facilities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-40

Citation:

Online since:

February 2014

Export:

Price:

* - Corresponding Author

[1] H. Yamaoka, and T. Kawaguchi, ISIJ International Vol. 45, (2005), p.522.

Google Scholar

[2] N. Oyama, Y. Iwami, T. Yamamoto, S. Machida, T. Yguchi, H. Sato, K. Takeda, Y. Watanabe, and M. Shimizu: ISIJ International Vol. 51, (2011), p.913.

DOI: 10.2355/isijinternational.51.913

Google Scholar

[3] Cumming, M.J. and Thurlby, J. A: Ironmaking and Steelmaking Vol. 17, (1990), p.245.

Google Scholar

[4] Nath, N. K. Silva, A.J. and Chakraborti, N.: Steel Research Vol. 68, (1997), p.285.

Google Scholar

[5] J. A. Castro, A.J. Silva, H. Nogami and J. Yagi: TMM-Tecnologia em Metalurgia e Materiais Vol. 1, (2005), p.59.

Google Scholar

[6] J.A. Castro, V.S. Guilherme, A.B. França, Y. Sasaki: Advanced Mat. Research Vol. 535 (2012), p.554.

Google Scholar

[7] J.A. Castro, N. Nath, A.B. França, V.S. Guilherme, Y. Sasaki: Ironmaking&Steelmaking Vol. 39(2012), p.605.

Google Scholar

[8] M. Nakano, K. Morii and T. Sato: ISIJ International Vol. 49, (2009), p.729.

Google Scholar

[9] E Kasai, S. Komarov, K. Nushiro and M. Nakano.: ISIJ International Vol. 45, (2005), p.538.

Google Scholar

[10] J.W. Jeon, S.M. Jumg and Y. Sasaki : ISIJ International Vol. 50, (2010), p.1064.

Google Scholar

[11] E.P. Rocha, J.A. Castro, G. S. Fonseca: Mat. Sci. Forum Vol. 727(2012), p.26.

Google Scholar

[12] J. A. Castro, A.J. Silva, H. Nogami and J. Yagi: TMM-Tecnologia em Metalurgia e Materiais Vol. 1, (2008), p.82.

Google Scholar

[13] S. Kasama, Y. Yamamura and K. Watanabe: ISIJ International Vol. 46, (2006), p.1014.

Google Scholar

[14] J.A. Castro, J.L. Pereira, V.S. Guilherme, E.P. Rocha and A.B. França: J Mater Res Technol. (2013), http: /dx. doi. org/10. 1016/j. jmrt. 2013. 06. 002(in press).

Google Scholar

[15] M. Nakano, K. Morii and T. Sato: ISIJ International Vol. 49 , (2009), p.729.

Google Scholar

[16] L. Li, J. Liu, X. Wu, X. Ren, W. Bing and L. Wu: ISIJ International Vol. 50, (2010), p.327.

Google Scholar

[17] F.P. Vitoretti and J.A. Castro: J. Mater Res Technol. (2013)http: /dx. doi. org/10. 1016/j. jmrt. 2013. 06. 004(in press).

Google Scholar

[18] M. Camijo, M. Matsumura and T. Kawaguchi: ISIJ International Vol. 49, (2009), p.1498.

Google Scholar

[19] N. Hayashi, S. V. Komarov and E. Kasai: ISIJ International Vol. 49, (2009), p.681.

Google Scholar

[20] Y. Chen, Z. Guo and Z. Wang: ISIJ International Vol. 48, (2008), p.1517.

Google Scholar

[21] J.W. Jeon, S.M. Jumg and Y. Sasaki : ISIJ International Vol. 50 (2010), p.1064.

Google Scholar

[22] X. Lv. Bai, C. Deng, Q. Huang and G. Qiu: ISIJ International Vol. 51 (2011), p.722.

Google Scholar

[23] J.A. Castro, A.B. França, V. S. Guilherme, Y. Sasaki: TMM-Tecnologia em Metalurgia, Materiais e Mineração Vol. 10(2013), p.17.

DOI: 10.4322/tmm.2013.026

Google Scholar

[24] J.A. Castro, Y. Sasaki, J. Yagi: Mat. Research Vol. 15(2012), p.848.

Google Scholar

[25] V.S. Guilherme, J.A. Castro: REM-Revista da Escola de Minas Vol. 65(2012), p.357.

Google Scholar

[26] J.A. Castro, H. Nogami and J. Yagi: ISIJ International Vol. 42 (2002), p.44.

Google Scholar

[27] M.C. Melaen: Numerical Heat Transfer B Vol. 21(1992) , p.1.

Google Scholar

[28] S. V. Patankar and D. B. Spalding: Int. J. Heat Mass Transfer Vol. 15(1972), p.1787.

Google Scholar

[29] K. C. Karki and S. V. Patankar: Numer. Heat Transfer B Vol. 14 (1988), p.295.

Google Scholar