Effect of Oxygen Plasma on the Optical Properties of Monolayer Graphene

Article Preview

Abstract:

The significant alteration of absorption (A) of monolayer graphene under mild oxygen plasma exposure has been observed. The first important effect is the reduction of the excitonic resonance peak at 4.64 eV. Secondly, in the near infrared range, A is gradually suppressed below an exposure-dependent threshold in sense that A << A0. Quantity A0 (given by πα and α is the fine structure constant) denotes constant absorption and relates to universal optical conductivity σ0. The suppression of A0 can be thought as the weakening of electron-hole interaction as displayed by the reduction of the excitonic resonance peak at 4.64 eV. The weakening of this interaction is due to the disorder introduced by the oxygen plasma exposure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

510-513

Citation:

Online since:

February 2014

Export:

Price:

* - Corresponding Author

[1] A.H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The Electronic Properties of Graphene, Rev. Mod. Phys. 81 (2009) 109.

DOI: 10.1103/revmodphys.81.109

Google Scholar

[2] N. M. Peres, The Transport Properties of Graphene, Rev. Mod. Phys. 82 (2010) 2673.

Google Scholar

[3] I. Santoso, P. K. Gogoi, H. B. Su, H. Huang, Y. Lu, D. Qi, W. Chen, M. A. Majidi, Y. P Feng, A. T. S. Wee, K. P. Loh, T. Venkatesan, R. P. Saichu, A. Goos, A. Kotlov, M. Ruebhausen, and A. Rusydi, Observation of Room-Temperature High-Energy Resonant Excitonic Effets in Graphene, Phys. Rev. B 84 (2011).

DOI: 10.1103/physrevb.84.081403

Google Scholar

[4] P. K. Gogoi, I. Santoso, S. Saha, S. Wang, A. H. Castro Neto, K. P. Loh, T. Venkatesan, A. Rusydi, Optical Conductivity Study of screening of many-body effects in graphene interfaces, Europhys. Lett. 99 (2012) 67009.

DOI: 10.1209/0295-5075/99/67009

Google Scholar

[5] L. Yang, J. Deslippe, C.H. Park, M.L. Cohen, and S.G. Louie, Excitonic Effects on the Optical Response of Graphene and Bilayer Graphene, Phys. Rev. Lett. 103 (2009) 186802.

DOI: 10.1103/physrevlett.103.186802

Google Scholar

[6] V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, Spectroscopic Ellipsometry of Graphene and an exciton-shifted van Hove peak in Absorption, Phys. Rev. B 81 (2010) 155413.

DOI: 10.1103/physrevb.81.155413

Google Scholar

[7] K. F. Mak, J. Shan, and T. F. Heinz, Seeing Many-Body Effects in Single-and Few-Layer Graphene: Observation of Two Dimensional Saddle-Point Excitons, Phys. Rev. Lett. 106 (2011) 046401.

DOI: 10.1103/physrevlett.106.046401

Google Scholar

[8] D. H. Chae, T. Utikal, S. Weisenburger, H. Giessen, K. von Klitzing, M. Lippitz, and J. Smet, Excitonic Fano Resonance in Free-Standing Graphene, Nano Lett. 11 (2011) 1379.

DOI: 10.1021/nl200040q

Google Scholar

[9] V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. Castro Neto, Electron-Electron Interactions in Graphene, Rev. Mod. Phys. 84 (2012) 1067.

DOI: 10.1103/revmodphys.84.1067

Google Scholar

[10] J. H. Chen, W.G. Cullen, C. Jang, M.S. Fuhrer, and E.D. Williams, Defect Scattering in Graphene, Phys. Rev. Lett. 102 (2009) 236805.

Google Scholar

[11] J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Charged-Impurity Scattering in Graphene, Nat. Phys. 4 (2008) 377.

DOI: 10.1038/nphys935

Google Scholar

[12] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane, Science 323 (2009).

DOI: 10.1126/science.1167130

Google Scholar

[13] T. O. Wehling, S. Yuan, A. I. Lichtenstein, A. K. Geim, and M. I. Katsnelson, Resonant Scattering by Realistic Impurities in Graphene, Phys. Rev. Lett. 105 (2010) 056802.

DOI: 10.1103/physrevlett.105.056802

Google Scholar

[14] S. Yuan, R. Roldan, H. de Raedt, and M. I. Katsnelson, Optical Conductivity of Disordered Graphene beyond the Dirac Cone Approximation, Phys. Rev. B 84 (2011) 195418.

DOI: 10.1103/physrevb.84.195418

Google Scholar

[15] V. M. Pereira, F. Guinea, J. M. B. Lopes dos Santos, N. M. R. Peres and A. H. Castro Neto, Disorder Induced Localized States in Graphene, Phys. Rev. Lett. 96 (2006) 036801.

DOI: 10.1103/physrevlett.98.259902

Google Scholar

[16] N. Jung, B. Kim, A. C. Crowther, N. Kim, C. Nuckolls, and L. Brus, Optical Reflectivity and Raman Scattering in Few-Layer-Thick Graphene highly Doped by K and Rb, ACS Nano 5 (2011) 5708.

DOI: 10.1021/nn201368g

Google Scholar

[17] A. C. Crowther, A. Ghassaei, N. Jung, L. E. Brus, Strong Charge-Transfer Doping of 1 to 10 Layer Graphene by NO2, ACS Nano 6 (2012) 1865.

DOI: 10.1021/nn300252a

Google Scholar

[18] I. Santoso, R. S. Singh, P. K. Gogoi, T. C. Asmara, D. Wei, W. Chen, A. T. S. Wei, V. M. Pereira, A. Rusydi, Tunable Optical Absorption and Interactions in Graphene via Oxygen Plasma, Phys. Rev. B (2013), in press. Condmat arXiv: 1307. 1358.

DOI: 10.1103/physrevb.89.075134

Google Scholar

[19] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, Measurement of the Optical Conductivity of Graphene, Phys. Rev Lett. 101 (2008) 196405.

DOI: 10.1103/physrevlett.101.196405

Google Scholar