Fabrication of Aluminum Doped Silica Preform Using MCVD and Solution Doping Technique: Soot Analyses and Solution Concentration Effect

Article Preview

Abstract:

This work is part of a study of solution doping in Modified Chemical Vapor Deposition (MCVD) used for silica optical fiber fabrication. This paper will concentrate on soot characterstics and the effect of different aluminum solution concentration. The effect of three different concentration of aluminum (0.3M,0.7M and 1.2M) with heat treatment are studied while the other parameters of MCVD and solution doping are fixed such as deposition temperature, SiCl4 flow, and soaking time. The porous core layer is deposited at 1800°C and the porosity of the deposited porous layer is analyzed using gas adsorption method. Refractive index profile of the doped preform is measured using preform analyzer. The aluminum distribution across the sintered glass layer is also examined by EDX.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-202

Citation:

Online since:

February 2014

Export:

Price:

* - Corresponding Author

[1] M.J.F. Digonnet, Rare earth doped fiber lasers and amplifiers, Marcel Dekker Inc., (1993).

Google Scholar

[2] J. Stone and C.A. Burrus, Neodymium-doped silica lasers in end-pumped fiber geometery, Appl. Phys Lett. 23(7), (1973) 388-389.

DOI: 10.1063/1.1654929

Google Scholar

[3] S.B. Poole, D.N. Payne and M.E. Fermann, Fabrication of low loss optical fibers containing rare earth ions, Electron. Lett. Vol. 21, (1985) 737-738.

DOI: 10.1049/el:19850520

Google Scholar

[4] B.J. Ainslie, A review of the fabrication and properties of Erbium doped fibers for optical amplifiers ,J. lightwave Technology , vol. 9, no. 2 (1991).

DOI: 10.1109/50.65880

Google Scholar

[5] M. Binnners and K. Jug, The formation of a SiO2 from the reaction SiCl4(g) + O2(g) à 2SiO2(s) + 2Cl2(g), Eur. J. Ing. Chem., (2000) 1127-1138.

DOI: 10.1002/(sici)1099-0682(200006)2000:6<1127::aid-ejic1127>3.3.co;2-y

Google Scholar

[6] R. Sen and A. Dhar, An Improved Method of Fabricating Rare Earth Doped Optical Fiber , Selected topics on optical fiber technology, Janeza Trdine 9, 51000 Rijeka, Croatia, 2012, p. pp.73-95.

DOI: 10.5772/28734

Google Scholar

[7] F. Khopin, A.A. Umnikov, A.N. Gur'yanov, M.M. Bubnov, A.K. Senatorv, and E.M. Dianov, Doping of Optical Fiber Preforms via Porous Silica Layer Infiltration with Salt Solutions , Inorganic Materials, Vol. 41 No. 3, (2005), 303-307.

DOI: 10.1007/s10789-005-0128-7

Google Scholar

[8] Y.H. Kim, U. C. Paek and W.T. Han, Effect of soaking temperature on concentrations of rare-earth ions in optical fiber core in solution doping process, Proceedings of SPIE Vol. 4282 (2001).

DOI: 10.1117/12.424768

Google Scholar

[9] P. Kliveri and S. Tammela, Design and fabrication of erbium-doped fibers for optical amplifiers, Opt. Eng. 39(7), ( 2000) 1943-1950.

DOI: 10.1117/1.602579

Google Scholar

[10] M. Thommes, Physical Adsorption Characterization of Nanoporous Materials, Chemie Ingenieur Technik, 82, No. 7 , (2010) 1059-1073.

DOI: 10.1002/cite.201000064

Google Scholar

[11] S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, Second Ed., Academic Press of New York, (1982).

Google Scholar

[12] A. Dhar, M. C. Paul, M. Pal, A. K. Mondal, S. Sen, H. S. Maiti, and R. Sen, Characterization of porous core layer for controlling rare earth incorporation in optical fiber , Optics Express, Vol. 14, Issue 20, (2006) 9006-9015.

DOI: 10.1364/oe.14.009006

Google Scholar

[13] A. Dhar, S. Das, H.S. Maiti and R. Sen, Fabrication of high aluminum containing rare earth doped fiber without core-clad interface defects, Optics Communications 283, (2010) 2344-2349.

DOI: 10.1016/j.optcom.2010.02.001

Google Scholar