Geobiology of In Situ Uranium Leaching

Article Preview

Abstract:

Driven by the world’s thirst for energy, the demand for uranium is rapidly increasing. Hence, producers of uranium are struggling to keep up with demands and are exploring more cost-effective methods of extraction. Uranium is currently mined via open pit and underground mining as well as with in situ leaching methods, with in situ leaching currently accounting for approximately 45 % of total uranium production. Studies have shown that the presence of uranium in soils strongly affects the composition and function of resident microbial communities. In view of the close association of biological processes and uranium geochemistry, it is surprising how little information is available on the effect of microbial communities on in situ leaching. Hence, this review focuses on the possibility to exploit the properties of such microorganisms and identify opportunities to use natural microbial processes to improve uranium recovery and mine site rehabilitation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

372-375

Citation:

Online since:

October 2013

Export:

Price:

[1] Outlook for the uranium industry: Evaluating the economic impact of the Australian uranium industry to 2030, Deloitte Touche Tohmatsu, Melbourne, (2007).

Google Scholar

[2] World uranium mining, World Nuclear Association, London, (2012).

Google Scholar

[3] H. Ehrlich, Geomicrobiology, New York, USA, Marcel Dekker, Inc., (2002).

Google Scholar

[4] G.M. Gadd, Metals, minerals and microbes: geomicrobiology and bioremediation, Microbiology 156 (2010) 609-643.

DOI: 10.1099/mic.0.037143-0

Google Scholar

[5] S. Silver, Bacterial resistances to toxic metal ions - a review, Gene 179 (1996) 9-19.

DOI: 10.1016/s0378-1119(96)00323-x

Google Scholar

[6] D.A. Fowle, J.B. Fein, A.M. Martin, Experimental study of uranyl adsorption onto Bacillus subtilis, Environ. Sci. & Technol. 34 (2000) 3737-3741.

DOI: 10.1021/es991356h

Google Scholar

[7] A. Geissler, M. Merroun, G. Geipel, H. Reuther, S. Selenska-Pobell, Biogeochemical changes induced in uranium mining waste pile samples by uranyl nitrate treatments under anaerobic conditions, Geobiology 7 (2009) 282-294.

DOI: 10.1111/j.1472-4669.2009.00199.x

Google Scholar

[8] G. Rastogi, S. Osman, P. Vaishampayan, G. Andersen, L. Stetler, et al., Microbial diversity in uranium mining-impacted soils as revealed by high-density 16S microarray and clone library, Microb. Ecol. 59 (2010) 94-108.

DOI: 10.1007/s00248-009-9598-5

Google Scholar

[9] Y. Suzuki, J.F. Banfield, Resistance to, and accumulation of, uranium by bacteria from a uranium-contaminated site, Geomicrobiol. J. 21 (2004) 113-121.

DOI: 10.1080/01490450490266361

Google Scholar

[10] J.D. Wall, L.R. Krumholz, Uranium reduction. Annu. Rev. Microbiol. 60 (2006) 149-166.

Google Scholar

[11] A.E. Ray, J.R. Bargar, V. Sivaswamy, A.C. Dohnalkova, Y. Fujita, et al., Evidence for multiple modes of uranium immobilization by an anaerobic bacterium. Geochim. Cosmochim. Ac. 75 (2011) 2684-2695.

DOI: 10.1016/j.gca.2011.02.040

Google Scholar

[12] S. Glasauer, T.J. Beveridge, E.P. Burford, F.A. Harper, G.M. Gadd, Metals and metaloids, transformations by microorganisms, in: Encyclopedia of soilds in the environment, Amsterdam, Elsevier, (2004).

DOI: 10.1016/b0-12-348530-4/00152-1

Google Scholar

[13] D.R. Lovley, E.J.P. Phillips, Y.A. Gorby, E.R. Landa, Microbial reduction of uranium, Nature 350 (1991) 413-416.

DOI: 10.1038/350413a0

Google Scholar

[14] A. Palmisano, T. Hazen Bioremediation of metals and radionuclides: What it is and how it works, Berkeley, Lawrence Berkeley National Laboratory, (2003).

DOI: 10.2172/820771

Google Scholar

[15] M.J. Marshall, A.S. Beliaev, A.C. Dohnalkova, D.W. Kennedy, L. Shi, et al. c-type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis, PLoS Biol. 4 (2006) e268.

DOI: 10.1371/journal.pbio.0040268

Google Scholar

[16] M. Wilkins, F. Livens, D. Vaughan, J. Lloyd, The impact of Fe(III)-reducing bacteria on uranium mobility, Biogeochemistry 78 (2006) 125-150.

DOI: 10.1007/s10533-005-3655-z

Google Scholar

[17] M.E. Hoque, O.J. Philip, Biotechnological recovery of heavy metals from secondary sources: An overview, Mater. Sci. Eng. C31 (2011) 57-66.

DOI: 10.1016/j.msec.2010.09.019

Google Scholar

[18] B.E. Kalinowski, A. Oskarsson, Y. Albinsson, J. Arlinger, A. Odegaard-Jensen, et al., Microbial leaching of uranium and other trace elements from shale mine tailings at Ranstad, Geoderma 122 (2004) 177-194.

DOI: 10.1016/j.geoderma.2004.01.007

Google Scholar

[19] G.W. Strandberg, S.E. Shumate, J.R. Parrott, Microbial cells as biosorbents for heavy metals: Accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa, Appl. Environ. Microb. 41 (1981) 237-245.

DOI: 10.1128/aem.41.1.237-245.1981

Google Scholar

[20] T. Tsuruta, Removal and recovery of uranium using microorganisms isolated from Japanese uranium deposits, J. Nucl. Sci. Technol. 43 (2006) 896-902.

DOI: 10.1080/18811248.2006.9711174

Google Scholar

[21] T. Sousa, A-P. Chung, A. Pereira, A.P. Piedade, P.V. Morais, Aerobic uranium immobilization by Rhodanobacter A2-61 through formation of intracellular uranium-phosphate complexes. Metallomics 5 (2013) 390-397.

DOI: 10.1039/c3mt00052d

Google Scholar

[22] M.L. Merroun, S. Selenska-Pobell, Bacterial interactions with uranium: An environmental perspective. J. Contam. Hydrol. 102 (2008) 285-295.

DOI: 10.1016/j.jconhyd.2008.09.019

Google Scholar

[23] C. Cai, H. Dong, H. Li, X. Xiao, G. Ou, et al., Mineralogical and geochemical evidence for coupled bacterial uranium mineralization and hydrocarbon oxidation in the Shashagetai deposit, NW China, Chem. Geol. 236 (2007) 167-179.

DOI: 10.1016/j.chemgeo.2006.09.007

Google Scholar

[24] A. Navrotsky, Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles, PNAS 101 (2004) 12096-12101.

DOI: 10.1073/pnas.0404778101

Google Scholar

[25] M.P. Neu, H. Boukhalfa, M.L. Merroun, Biomineralization and biotransformations of actinide materials, MRS Bulletin 35 (2010) 849-857.

DOI: 10.1557/mrs2010.711

Google Scholar