Experimental Study and Modeling of the Zinc Coating Thickness

Article Preview

Abstract:

The effects of six factors, affecting during the acid zinc plating process as its technological conditions, on the thickness of the resulting zinc coating has been examined. In order to control the quality of the resulting zinc coating deposited on the surface alloy EN 355 at a constant current density of 5 [Adm-2], the mathematical model predicting the thickness of deposited coating was developed using Design of Experiments (DoE) method. The obtained mathematical model describes the resulting deposited layer of zinc coating in dependence on the factor-level changes and combinations with the reliability of 58.75%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 712-715)

Pages:

382-386

Citation:

Online since:

June 2013

Export:

Price:

* - Corresponding Author

[1] A.P. Yadav, H. Katazama, K .Noda, H. Masuda, A. Nishikata and T. Tsuru: Surface potential distribution over a zinc/steel galvanic couple corroding under thin layer of electrolyte. Electrochimica Acta, Vol. 52 (2007), Issue 9, p.3121–3129

DOI: 10.1016/j.electacta.2006.09.061

Google Scholar

[2] J.M. Lee: Numerical analysis of galvanic corrosionof Zn/Fe interface beneath a thin electrolyte.Electrochimica Acta, Vol. 51 (2006), Issue 16, p.3256–3260

DOI: 10.1016/j.electacta.2005.09.026

Google Scholar

[3] A. Panda, J. Jurko, M. Džupon and I. Pandová: Optimalization of Heat Treatment Bearings Rings With Goal to Eliminate Deformation of Material. Chemické listy. Vol. 105, No. S (2011), pp.459-461.

Google Scholar

[4] X.G. Zhang and E.M. Valeriote: Galvanic protection of steel and galvanic corrosion of zinc under thin electrolyte Corrosion Science, Vol. 34 (1993), No. 12, pp.1957-1972

DOI: 10.1016/0010-938x(93)90053-j

Google Scholar

[5] N. Boshkov, K. Petrov, D. Kovacheva, S. Vitkova and S. Nemska: Influence of the alloying component on the protective ability of some zinc galvanic coatings. Electrochimica Acta, Vol. 51 (2005), Issue 1, p.77–84

DOI: 10.1016/j.electacta.2005.03.049

Google Scholar

[6] A.P. Yadav, H. Katazama, K. Noda, H. Masuda, A. Nishikata and T. Tsuru: Effect of Al on the galvanic ability of Zn–Al coating under thin layer of electrolyte. Electrochemica Acta, Vol.  52 (2007), Issue 7, pp.2411-2422

DOI: 10.1016/j.electacta.2006.08.050

Google Scholar

[7] G.M. Song, W.G. Sloof, Y.T. Pei and J.Th.M. De Hosson: Interface fracture behavior of zinc coatings on steel: Experiments and finite element calculations. Surface and Coatings Technology Vol. 201 (2006), Issue 7, p.4311–4316

DOI: 10.1016/j.surfcoat.2006.08.046

Google Scholar

[8] S. Dubent, M.L.A.D. Mertens and M. Saurat: Electrodeposition, characterization and corrosion behaviour of tin–20 wt.% zinc coatings electroplated from a non-cyanide alkaline bath Materials Chemistry and Physics, 120 (2010), p.371–380

DOI: 10.1016/j.matchemphys.2009.11.017

Google Scholar

[9] D. Dhak, M. Mahon, E. Asselin and A. Alfantazi: Characterizing industrially electrowon sticky zinc deposits. Hydrometallurgy, 111-112 (2012), p.136–140

DOI: 10.1016/j.hydromet.2011.09.007

Google Scholar

[10] M. Aliokhazraei, E.K. Alamdari, M. Zamanzade, M. Salasi, S. Behrouzghaemi, J. Heydari, D.F. Haghshenas and V. Zolala: Empirical equations for electrical conductivity and density of Zn, Cd and Mn sulphate solutions in the range of electrowinning and electrorefining electrolytes. J. Mater. Sci. 42 (2007), p.9622–9631

DOI: 10.1007/s10853-007-1971-5

Google Scholar

[11] J. Yu, L. Wang, L. Su, X. Ai and H. Yang: Temperature effects on the electrodeposition of zinc. J. Electrochem. Soc. 150 (2003), C19–C23

DOI: 10.1149/1.1525269

Google Scholar

[12] X. Xia, I. Zhitomirsky and J.R. McDermid: Electrodeposition of zinc and composite zinc–yttria stabilized zirconia coatings. J. Mater. Process. Technol. 209 (2009), p.2632–2640

DOI: 10.1016/j.jmatprotec.2008.06.031

Google Scholar

[13] A.M. Alfantazi and D.B. Dreisinger: The role of zinc and sulfuric acid concentrations on zinc electrowinning from industrial sulfate based electrolyte. J. Appl. Electrochem. 31 (2001), p.641–646

Google Scholar

[14] M. Li, S. Luo, Y. Qian, W. Zhang, L. Jiang and J. Shen: Effect of additives on electrodeposition of nanocrystalline zinc from acidic sulfate solutions. J. Electrochem. Soc.154 (2007), D567–D571

DOI: 10.1149/1.2772093

Google Scholar

[15] D.J. MacKinnon, J.M. Brannen and P.L. Fenn: Characterization of impurity effects in zinc electrowinning from industrial acid sulfate electrolyte. J. Appl. Electrochem. 17 (1987), p.1129–1143

DOI: 10.1007/bf01023596

Google Scholar

[16] Ľ. Straka, I. Čorný and J. Boržíková: Analysis of heat-affected zone depth of sample surface at electrical discharge machining with brass wire electrode. Strojarstvo: Journal for Theory and Application in Mechanical Engineering. Vol. 51 (2009), No. 6, pp.633-640

Google Scholar