Detection of Cryptosporidium parvum and Giardia lamblia in Water Supply by Quantitative Real-Time PCR

Article Preview

Abstract:

Cryptosporidium parvum and Giardia lamblia are common pathogenic protozoa in water, which pose high risk to drinking water supply. In the present study, detection of C. parvum and G. lamblia was performed by quantitative real-time PCR (RT-PCR). Pairs of PCR primers were evaluated for the detection specificity to pathogenic C. parvum and G. lamblia. The recovery of the RT-PCR detection procedure was examined and high recovery rates (i.e., more than 45% for C. parvum and more than 50% for G. lamblia ) were achieved. The RT-PCR method was used to detect C. parvum and G. lamblia in a secondary water supply. The results indicated the potential application of the quantitative RT- PCR method in detection of C. parvum and G. lamblia in water supply.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

3707-3711

Citation:

Online since:

May 2012

Export:

Price:

[1] U.S. Environmental Protection Agency, in: Method 1623: Cryptosporidium and Giardia in water by filtration/IMS/FA. EPA 821-R-99-006. Office of Water, U.S. Environmental Protection Agency, Washington, DC (1999).

Google Scholar

[2] G. Vesey, P. Hutton, A. Champion, N. Ashbolt, K.C. Williams, A. Warton and D. Veal: Cytometry Vol. 1-6 (1994), p.16

DOI: 10.1002/cyto.990160102

Google Scholar

[3] P.A. Rochelle, M.M. Marshall, J.R. Mead, A.M. Johnson, D.G. Korich, J.S. Rosen and R. deLeon: Appl.Environ. Microbiol Vol. 3809-3817 (2002), p.68

DOI: 10.1128/aem.68.8.3809-3817.2002

Google Scholar

[4] A.A. de la Cruz and M. Sivaganesan, in: Detection of Giardia and Cryptosporidium spp. in source water samples by commercial enzyme-immunoassay kits. In Proceedings of the Water Quality Technology Conference, American Water Works Association, San Francisco, Calif (1994).

Google Scholar

[5] K.A. Webster, J.D.E. Pow, M. Giles, J. Catchpole and M.J: Vet. Parasitol Vol. 35-44 (1993), p.50

Google Scholar

[6] K.M. Miller and C.R. Sterling: Appl. Environ. Microbiol Vol. 5949-5950 (2007), p.73

Google Scholar

[7] J.J. Verweij, R.A. Blangé, K. Templeton, J. Schinkel, E.A. Brienen, M.A. van Rooyen, L. van Lieshout and A.M. Polderman: J. Clin. Microbiol Vol. 1220-1223 (2004), p.42

DOI: 10.1128/jcm.42.3.1220-1223.2004

Google Scholar

[8] P.A. Rochelle, R. De Leon, M.H. Stewart and R.L. Wolfe: Appl. Environ. Microbiol Vol. 106-114 (1997), p.63

Google Scholar

[9] C. Kaucner and T. Stinear Appl. Environ. Microbiol Vol. 1743-1749 (1998), p.64

Google Scholar

[10] C. Wagner and P. Kimmig: Appl. Environ. Microbiol Vol. 4514-4516 (1995), p.61

Google Scholar

[11] D.W. Johnson, N.J. Pieniazek, D.W. Griffin, L. Misener and J.B. Rose: Appl. Environ. Microbiol Vol. 3849-3855 (1995), p.61

DOI: 10.1128/aem.61.11.3849-3855.1995

Google Scholar

[12] M. Abbaszadegan, M.S. Huber, I.L. Pepper and C.P. Gerba, in: Detection of viable Giardia cysts in water samples using polymerase chain reaction. In Proceedings of the Water Quality Technology Conference, American Water Works Association, Miami, Florida (1993).

Google Scholar

[13] M.H. Mahbubani, A.K. Bej, M.H. Perlin, F.W. Schaefer III, W. Jakubowski and R.M. Atlas: J. Clin. Microbiol Vol. 74-78 (1992), p.30

Google Scholar

[14] I.M. Sulaiman, R. Fayer, C. Bern, R.H. Gilman, J.M. Trout, P.M. Schantz, P. Das, A.A. Lal and L. Xiao: Emerg. Infect. Dis Vol. 1444-1452 (2003), p.9

DOI: 10.3201/eid0911.030084

Google Scholar

[15] M.A. Laxer, B.K. Timblin and R.J. Patel: Am. J. Trop. Med. Hyg Vol. 688-694 (1991), p.45

Google Scholar

[16] P. Gobet, J.C. Buisson, O. Vagner, M. Naciri, M. Grappin, S. Comparot, G. Harly, D. Aubert, I. Varga, P. Camerlynck and A. Bonnin: J. Clin. Microbiol Vol. 254-256 (1997), p.35

DOI: 10.1128/jcm.35.1.254-256.1997

Google Scholar

[17] M. Abbaszadegan, M.S. Huber, C.P. Gerba and I.L. Pepper: Appl. Environ. Microbiol Vol. 324-328 (1997), p.63

Google Scholar