Exploration of the Defect’s Effect on the Mechanical Properties of Different Orientated Nanowires

Article Preview

Abstract:

Molecular dynamics (MD) simulations have been carried out to investigate the defect’s effect on the mechanical properties of copper nanowire with different crystallographic orientations, under tensile deformation. Three different crystallographic orientations have been considered. The deformation mechanism has been carefully discussed. It is found that the Young’s modulus is insensitive to the defect, even when the nanowire’s crystallographic orientation is different. However, due to the defect’s effect, the yield strength and yield strain appear a large decrease. The defects have played a role of dislocation sources, the slips or stacking faults are first generated around the locations of the defects. The necking locations have also been affected by different defects. Due to the surface defect, the plastic deformation has received a large influence for the and orientated nanowires, and a relative small influence is seen for the nanowire.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 328-330)

Pages:

1239-1244

Citation:

Online since:

September 2011

Export:

Price:

[1] J. Sarkar, G. Khan, A. Basumallick, Bull. Mater. Sci., 30 (2007) 271-290.

Google Scholar

[2] D. Rugar, R. Budakian, H. Mamin, B. Chui, Nature, 430 (2004) 329-332.

DOI: 10.1038/nature02658

Google Scholar

[3] H. Ikeda, Y. Qi, T. Çagin, K. Samwer, W.L. Johnson, W.A. Goddard, Phys. Rev. Lett., 82 (1999) 2900.

DOI: 10.1103/physrevlett.82.2900

Google Scholar

[4] Y. Jing, Q. Meng, Y. Gao, Comput. Mater. Sci., 45 (2009) 321-326.

Google Scholar

[5] M. McDowell, A. Leach, K. Gall, Modell. Simul. Mater. Sci. Eng., 16 (2008) 045003.

Google Scholar

[6] S. Jiang, H. Zhang, Y. Zheng, Z. Chen, J. Phys. D: Appl. Phys., 42 (2009) 135408.

Google Scholar

[7] M. McDowell, A. Leach, K. Gall, Nano Lett., 8 (2008) 3613-3618.

Google Scholar

[8] K. Gall, J. Diao, M.L. Dunn, M. Haftel, N. Bernstein, M.J. Mehl, J. Eng. Mater. Technol., 127 (2005) 417.

Google Scholar

[9] V.K. Sutrakar, D.R. Mahapatra, Intermetallics, 18 (2010) 679-687.

Google Scholar

[10] H.S. Park, Nano Lett., 6 (2006) 958-962.

Google Scholar

[11] J. Liu, J. Duan, M. Toimil-Molares, S. Karim, T. Cornelius, D. Dobrev, H. Yao, Y. Sun, M. Hou, D. Mo, Nanotechnology, 17 (2006) (1922).

DOI: 10.1088/0957-4484/17/8/020

Google Scholar

[12] R. Dou, B. Derby, Scripta Mater., 59 (2008) 151-154.

Google Scholar

[13] Y. Lin, D. Pen, Nanotechnology, 18 (2007) 395705.

Google Scholar

[14] H. Park, K. Gall, J. Zimmerman, J. Mech. Phys. Solids, 54 (2006) 1862-1881.

Google Scholar

[15] S. Tyagi, J. Lee, G. Buxton, A. Balazs, Macromolecules, 37 (2004) 9160-9168.

Google Scholar

[16] A. Cao, Y. Wei, E. Ma, Phys. Rev. B, 77 (2008) 195429.

Google Scholar

[17] J. Diao, K. Gall, M. Dunn, J. Zimmerman, Acta Mater., 54 (2006) 643-653.

Google Scholar

[18] W.G. Hoover, Phys. Rev. A, 31 (1985) 1695-1697.

Google Scholar

[19] S. Nosé, J. Chem. Phys., 81 (1984) 511.

Google Scholar

[20] Y. Mishin, M. Mehl, D. Papaconstantopoulos, A. Voter, J. Kress, Phys. Rev. B, 63 (2001) 224106.

Google Scholar

[21] S. Plimpton, J. Comput. Phys., 117 (1995) 1-19.

Google Scholar

[22] C. Kelchner, S. Plimpton, J. Hamilton, Phys. Rev. B, 58 (1998) 11085-11088.

Google Scholar

[23] H.F. Zhan, Y.T. Gu, P.K.D.V. Yarlagadda, Adv. Sci. Lett., (2011 In press).

Google Scholar

[24] W. Liang, M. Zhou, J. Eng. Mater. Technol., 127 (2005) 423-433.

Google Scholar