Effects of Annealing on Microstructure and Mechanical Properties of Bulk Nanocrystalline Fe3Al Based Alloy with 10 Wt. % Mn Prepared by Aluminothermic Reaction

Article Preview

Abstract:

Microstructure and mechanical properties of bulk nanocrystalline Fe3Al based alloy with 10 wt. % Mn prepared by aluminothermic reaction after annealing at 600, 800 and 1000°C for 8 h were investigated in order to gain insights in effects of annealing. Crystal structure of the alloy did not change and a fiber phase with enriched Mn appeared in the annealed alloy. Grain size of the alloy changed a little after annealing at 600°C but increased a lot after annealing at 800 and 1000°C. The annealed alloy had plasticity in compression at room temperature and the alloy annealed at 1000°C had yield strength of 782 MPa. The alloy without annealing has creep properties in compression at 800 and 1000°C and can be easily hot rolled to strip and sheet.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

1939-1944

Citation:

Online since:

May 2011

Export:

Price:

[1] Y. J. Li, J. Wang and H. Q. Wu: Mater. Res. Bull. Vol. 36 (2001), p.2389

Google Scholar

[2] P. Josef and S. Guido: Intermetallics Vol.10 (2002), p.717

Google Scholar

[3] C. G. Mckamey, J. H. Devan and P. E. Tortorelli: J. Mater. Res. Vol. 6 (1991), p.1779

Google Scholar

[4] Z. Yang, Y. Wang and A. M. Zhou: J. Iron Steel Res. Vol. 14 (2002), p.25 (in Chinese)

Google Scholar

[5] N. S. Stoloff: Mater. Sci. Eng. A Vol. 258 (1998), p.2

Google Scholar

[6] Y. D. Huang and L. Froyen: Intermetallics Vol. 10 (2002), p.473

Google Scholar

[7] R. G. Baligidad, A. Radhakrishna, Datta Abhijit and Rama Rao: Mater. Sci. Eng. A Vol. 313 (2001), p.117

Google Scholar

[8] V. L. Tellkamp and E. J. Lavernia: Nanostructured Mater. Vol. 12 (1999), p.249

Google Scholar

[9] E. Bonetti, Valdrég and S. Enzo: Nanostructured Mater. Vol. 2 (1993), p.369

Google Scholar

[10] Y. D. Huang, W. Y. Yang and Z. Q. Sun: Mater. Sci. Eng. A Vol. 263 (1999), p.75

Google Scholar

[11] P. Q. La, J. Yang, David J H Cockayne, W. M. Liu, Q. J. Xue and Y. D. Li: Adv. Mater. Vol. 18 (2006), p.733

Google Scholar

[12] P. Q. La, Y. P. Wei, R. J. Lv, Y. Zhao and Y. Yang: Mater. Sci. Eng. A Vol. 527 (2010), p.2313

Google Scholar

[13] X. X. Huang, Niels Hansen and Nobuhiro Tsuji: Science Vol. 312 (2006), p.249

Google Scholar

[14] R. S. Sundar, D. H. Sastry and Y. V. R. K. Prasad: Mater. Sci. Eng. A Vol. 347 (2003), p.86

Google Scholar

[15] M. Eumann, M. Palm and G. Sauthoff: Intermetallics Vol. 12 (2004), p.625

Google Scholar

[16] H. Li and F. Ebrahimi: Adv. Mater. Vol. 17 (2005), p. (1969)

Google Scholar

[17] Y. Nishino and T. Tanahashi: Mater. Sci. Eng. A Vol. 387-389 (2004), p.973

Google Scholar

[18] S. X. McFadden, R. S. Mishra, R. Z. Valiev, A. P. Zhilyaev and A. K. Mukherjee: Nature Vol. 398 (1999), p.684

Google Scholar

[19] G. H. Fair and J. V. Wood: J. Mater. Sci. Vol. 29 (1994), p. (1935)

Google Scholar

[20] S. M. Zhu, M. Tamura and K Sakamoto: Mater. Sci. Eng. A Vol. 1996 (16), p.161

Google Scholar

[21] H. V. Swygenhoven: Science Vol. 296 (2002), p.66

Google Scholar

[22] L. Lu, X. Chen, X. Huang and K. Lu: Science Vol. 323 (2009), p.607

Google Scholar

[23] W. K. Tredway: Science Vol. 282 (1998), p.1275

Google Scholar