Molybdenum Oxide Particles Doped in Hole Transport Layer to Enhance the Efficiency of Flexible Polymer Solar Cells

Article Preview

Abstract:

Five PEDOT:PSS:MoO3 volume ratios (1:1, 1:2, 1:3, 1:4, 1:5) hybrid hole transport layer (HTL) were prepared by solution processed method. The cell structure was PET/ITO/PEDOT:PSS:MoO3/P3HT:PCBM/Ca/Al. We investigated the effect of MoO3 added into the traditional PEDOT:PSS hole transfer layer on the photovoltaic performance. From these results, we found that the short circuit current density (Jsc), fill factor (FF) and power conversion efficiency PCE of the cells with MoO3 are always higher than those of cell without MoO3.The short-circuit current density, fill factor and power conversion efficiency of cells increased with increasing MoO3 volume ratio from 1:1 to 1:3 and then decreased slightly when the volume ratio increased to 1:4 and 1:5. The cell with 1:3 volume ratio exhibited the highest Jsc of 9.41 mA/cm2, an increase of 22%, and the highest PCE of 2.74%, an increase of 39%, compared to the controlled cell using PEDOT:PSS layer. The addition of MoO3 increased the probability of exciton dissociation due to its high hole mobility, thereby enhancing the Jsc and FF.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-53

Citation:

Online since:

March 2018

Export:

Price:

[1] J. Peet, J. Y. Kim, N. E. Coates, W. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Efficiency enhancementin low-band gap polymer solar cells by processing with alkanedithiols, Nat. Mater. 6 (2007) 497-500.

DOI: 10.1038/nmat1928

Google Scholar

[2] Y. Y. Liang, D. Feng, Y. Wu, S. T. Tsai, G. Li, C. Ray, L. Yu, Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties, J. Am. Chem. Soc. 131 (2009) 7792-7799.

DOI: 10.1021/ja901545q

Google Scholar

[3] M. K. Riede, K. O. Sylvester-Hvid, M. Glatthaar, N. Keegan, T. Ziegler, B. Zimmermann, M. Niggenmann, A. W. Liehr, G. Willekr, A. Gombert, High throughput testing platform for organic solar cells, Prog. Photovolt.: Res. Appl. 16 (2008) 561-576.

DOI: 10.1002/pip.836

Google Scholar

[4] J. Meyer, R. Khalandovsky, P. G. Orrn, A. Kahn, MoO3 films spin-coated from a nano particle suspension for efficient hole-injection inorganic electronics, Adv. Mater. 23 (2011) 70-73.

DOI: 10.1002/adma.201003065

Google Scholar

[5] C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans, B. P. Rand, Solution-processed MoO3 thin films as a hole-injection layer for organic solar cells, ACS Appl. Mater. Interf. 3(9) (2011) 3244-3247.

DOI: 10.1021/am200729k

Google Scholar

[6] T. Wang, P. Jiu, J. Li, C. Li, F. Sun, J. F. Lu, Preparation and characterization of MoO3 hole-Injection layer for organic solar cell fabrication and optimization, Sol. Energ. Mater. Sol. Cell. 120 (2014) 603-609.

DOI: 10.1016/j.solmat.2013.10.002

Google Scholar

[7] M. Irfan, H. Zhang, C. W. Ding, Y. T. Gao, Strong interface p-doping and band bending in C60 on MoOx, Organ. Electr. 12(9) (2011) 1588-1593.

DOI: 10.1016/j.orgel.2011.06.007

Google Scholar

[8] Y. J. He, H. Y. Chen, G. J. Zhao, J. H. Hou, Y. F. Li, Biindene-C60 adducts for the application as acceptor in polymer solar cells with higher open-circuit-voltage, Sol. Energ. Mater. Sol. Cell. 95(3) (2011) 899-903.

DOI: 10.1016/j.solmat.2010.11.016

Google Scholar