Carbonitriding “Pack Cyaniding” of Ductile Irons

Article Preview

Abstract:

In this paper, ductile iron was produced using a rotary furnace. The microstructures of the ductile iron (with and without cyanided coatings) were then characterized using optical microscopy, scanning electron microscopy (SEM) and energy diffraction X-ray spectroscopy (EDS). The surfaces of the ductile iron were then subjected to high temperature carbonitriding using a pack cementation process in which carbon and nitrogen were diffused into the ductile iron from powder mixtures consisting of ground cassava leaves and barium carbonate (BaCO3) energizers. The wear behavior of the coated and uncoated ductile iron was studied using the pin-on-disk method. The wear mechanisms were also elucidated using a combination of SEM and EDS. The mechanisms of wear were also studied using nanoscratch experiments. The resulting wear rates are then compared with those from micron-scale wear tracks obtained from pin-on-disk experiments. The implications of the results are then discussed for the design of wear resistant ductile irons.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

330-348

Citation:

Online since:

December 2015

Export:

Price:

[1] J. Williams, Engineering Tribology, Cambridge University press, (2005).

Google Scholar

[2] P. L. Hurricks, Some metallurgical factors controlling the abrasive wear resistance of steels. A review, Wear 26, pp.285-301, (1973).

DOI: 10.1016/0043-1648(73)90184-1

Google Scholar

[3] T.S. Eyre, The mechanism of wear, Tribology International, (1978).

Google Scholar

[4] Q. Luo, J. Xie, W. Lu, Investigating of the wear failure mechanism of a flour milling roller, Wear 161, pp.11-16, (1993).

DOI: 10.1016/0043-1648(93)90447-t

Google Scholar

[5] B. Hans, Comparison of wear resistant MMC and white cast iron, Wear 254, p.47–54, (2003).

DOI: 10.1016/s0043-1648(02)00300-9

Google Scholar

[6] R. Zhou, Y. Jiang, D. Lu, R Zhou, Z. Li, Development and characterization of a wear resistant bainite/martensite ductile iron by combination of alloying and a controlled cooling heat-treatment, Wear, Vol. 250, p.529–534, (2001).

DOI: 10.1016/s0043-1648(01)00603-2

Google Scholar

[7] X. Jincheng, Ecodesign for wear resistant ductile cast iron with medium manganese content, Materials & Design, Vol. 24, p.63–68, (2003).

DOI: 10.1016/s0261-3069(02)00076-6

Google Scholar

[8] O. Celik, H. Ahlatci, E. S. Kayali, H. Cimenoglu, High temperature abrasive wear behavior of an as-cast ductile iron, Wear, Vol. 258, p.189–193, (2005).

DOI: 10.1016/j.wear.2004.09.004

Google Scholar

[9] G. Pintuade, F. G. Bernardes, M. M. Santos, A. Sinatora, E. Albertin, Mild and severe wear of steels and cast irons in sliding abrasion, Wear, Vol. 267, p.19–25, (2009).

DOI: 10.1016/j.wear.2008.12.099

Google Scholar

[10] W. M. Ke, F. C. Zhang, Z. N. Yang, M. Zhang, Micro-characterization of macro-sliding wear for steel, Materials Characterization, (82) pp.120-129, (2013).

DOI: 10.1016/j.matchar.2013.05.009

Google Scholar

[11] L. L. Zhen, X. Z. Yong, C. R. Qi, H. J. Zhi, An investigation of the abrasive wear behavior of ductile cast iron, Journal of Materials Processing Technology, (116) p.176–181, (2001).

DOI: 10.1016/s0924-0136(01)01013-5

Google Scholar

[12] F. Findik, Latest progress on tribological properties of industrial materials, Materials & Design, Vol. 57, p.218–244, (2014).

DOI: 10.1016/j.matdes.2013.12.028

Google Scholar

[13] S. Achanta, M. Feuerbacher, A. Grishin, X. Ye, J. P. Celis, On the mechanical and tribological behavioir of Al3Mg2 complex metallic alloys as bulk material and as coating, Intermetallics, Vol. 18, p.2096–2104, (2010).

DOI: 10.1016/j.intermet.2010.06.016

Google Scholar

[14] M. Berger, S. Hogmark, Tribological properties of selected PVD coatings when slid against ductile materials, Wear, Vol. 252, p.557–565, (2002).

DOI: 10.1016/s0043-1648(02)00011-x

Google Scholar

[15] M. A Wimmer, J. Loos, R. Nassutt, M. Hertkemper, A. Fischer, The acting wear mechanisms on metal-on-metal hip joint bearings: in vitro results, Wear, Vol. 250, p.129–139, (2001).

DOI: 10.1016/s0043-1648(01)00654-8

Google Scholar

[16] H. Mishina, Friction and wear of semiconductors in sliding contact with pure metals, Tribological International, Vol. 21, p.76–82, (1988).

DOI: 10.1016/0301-679x(88)90078-3

Google Scholar

[17] S. Mohan, A. Mohan, W ear, friction and prevention of tribo-surface by coatings/nano-coatings, Anti-Abrasives Nanocoatings (current and future applications), p.3–22, (2015).

DOI: 10.1016/b978-0-85709-211-3.00001-7

Google Scholar

[18] Y. Kayali, S. Taktak, S. Ulu, Y. Yalcin, Investigation of mechanical properties of boro-tempered ductile iron, Materials & Design, Vol. 31, p.1799–1803, (2010).

DOI: 10.1016/j.matdes.2009.11.017

Google Scholar

[19] P. H. S. Cardoso, C. L. Isreal, T. R. Strohaecker, Abrasive wear in austempered ductile irons: A comparison with cast irons, Wear, Vol. 313, p.29–33, (2014).

DOI: 10.1016/j.wear.2014.02.009

Google Scholar

[20] A. Meena, M. El Mansori, Study of dry and minimum quantity lubrication drilling of novel austempered ductile iron (ADI) for automotive applications, Wear, Vol. 271, p.2412–2416, (2011).

DOI: 10.1016/j.wear.2010.12.022

Google Scholar

[21] H. L. D. Lovelock, J. Kinds, P. M. Young, Characterization of WC–12Co thermal spray powders and HPHVOF wear resistant coatings, Powder Metallurgy 41 (4) p.292–299, (1998).

DOI: 10.1179/pom.1998.41.4.292

Google Scholar

[22] S. Karaoğlu, Structural characterization and wear behavior of plasma-nitrided AISI 5140 low-alloy steel, Mater Charact, (49) p.349–357, (2002).

DOI: 10.1016/s1044-5803(03)00031-7

Google Scholar

[23] X. Qi, S. Zhu, H. Ding, Z. Zhu, Z. Han, Microstructure and wear behaviors of WC–12%Co coating deposited on ductile iron by electric contact surface strengthening, Applied Surface Science, (282) p.672– 679, (2013).

DOI: 10.1016/j.apsusc.2013.06.032

Google Scholar

[24] V. Lopez, M. Bello, J. Ruiz, B.J. Fernandez, Surface laser treatment of ductile irons, Journal of Materials Science, (29) p.4216–4224, (1994).

DOI: 10.1007/bf00414201

Google Scholar

[25] V. K. Balla, S. Bose, A. Bandyopadhyay, Microstructure and wear properties of laser deposited WC–12%Co composites, Materials Science and Engineering A (527) p.6677–6682, (2010).

DOI: 10.1016/j.msea.2010.07.006

Google Scholar

[26] J. R. Sobiecki, T. Wierzchon, Structure and properties of plasma carbonitrided Ti–6Al–2Cr–2Mo alloy, Surface & Coatings Technology, (200) p.4363 – 4367, (2006).

DOI: 10.1016/j.surfcoat.2005.02.162

Google Scholar

[27] U. Sena, S. Sena, F. Yilmazb, Structural characterization of boride layer on boronized ductile irons, Surface and Coatings Technology, (176) p.222–228, (2004).

DOI: 10.1016/s0257-8972(03)00731-x

Google Scholar

[28] A. M. A. El-Rahman, An investigation on the microstructure, tribological and corrosion performance of AISI 321 stainless steel carbonitrided by RF plasma process, Surface & Coatings Technology, (205) p.674–681, (2010).

DOI: 10.1016/j.surfcoat.2010.08.036

Google Scholar

[29] O. J. Ibironke, , A. Falaiye, , T. V. Ojumu, E. A. Odo, O. O. Adewoye, Case-depth studies of pack cyaniding of mild steel using cassava leaves, Materials and Manufacturing Processes, 19 (5), p.899–905, (2004).

DOI: 10.1081/amp-200030626

Google Scholar

[30] A. R. Adetunji, B. E. Atta Daniel, D. A. Pelemo, O. A. Olasupo, M. O. Adeoye, and O. O. Adewoye, Metallographic studies of pack cyanided mild steel using cassava leaves, Materials and Manufacturing Processes, 23: p.1–6, (2008).

DOI: 10.1080/10426910801938551

Google Scholar

[31] B. E Attah Daniel, K. Ebisike, C. E. Adeeyinwo, A. R. Adetunji, S. O. O. Olusunle, O. O. Adewoye, Performance Characteristics of Argentometric Method of Cyanide Determination, International Journal of Science and Technology, Vol. 2, No. 10, pp.735-740, (2013).

Google Scholar

[32] K. J. Akinluwade, A. R. Adetunji, M. O. Adeoye, L. E. Umoru, P. N. Kalu, A. T. Taiwo, O. O. Adewoye, Development of an Environmentally Friendly in-situ Pack-Cyaniding Technique, Journal of Minerals & Materials Characterization & Engineering, Vol. 11, No. 1, pp.21-30, (2012).

DOI: 10.4236/jmmce.2012.111002

Google Scholar

[33] I. M. Hutchings, Tribology: Friction and Wear of Engineering Materials, Arnold, (1995).

Google Scholar

[34] Hysitron TI 750 Ubi User Manual, Revision 9. 2. 1211.

Google Scholar

[35] R. Kallbom, K. Hamberg, M. Wessen, L. E. Bjorkegreen, On the solidification sequence of ductile iron castings containing chunky graphite, Materials Science and Engineering: A, Vol. 413-414, p.346–351, (2005).

DOI: 10.1016/j.msea.2005.08.210

Google Scholar

[36] M. M. Rashidi, M. H. Idris, The effects of solidification on the microstructure and mechanical properties of modified ductile Ni-resist iron with a high manganese content, Materials Science and Engineering: A, Vol. 597, p.395–407, (2014).

DOI: 10.1016/j.msea.2013.12.070

Google Scholar

[37] K. M. Pedersen, N. S. Tiedje, Graphite nodule count and size distribution in thin walled ductile cast iron, Materials Characterisation, Vol. 59, p.1111–1121, (2008).

DOI: 10.1016/j.matchar.2007.09.001

Google Scholar