Carbon and Nitrogen Concentration Profiles of Cassava-Pack Carbonitrided Steel: Model and Experiment

Article Preview

Abstract:

Cassava-leaf-enhanced carbonitriding is a surface hardening procedure that utilizes the high cyanide content that is present in processed cassava leaves to thermochemically diffuse carbon and/or nitrogen into the interstitial sites of steel. This paper presents analytical models for the prediction of carbon and nitrogen concentration profiles, as well as the total case depths associated with the diffusion of carbon and nitrogen during the cassava-leaf-enhanced carbonitriding of low carbon steel. Using Fick's second law of diffusion and approximate initial and boundary conditions, two separate analytical models were presented for intermediate and high temperature cassava-leaf-enhanced carbonitriding processes. The trends in the total case depths are shown to be qualitatively similar to experimental measurements of case depths. The implications of the results are discussed for the surface hardening of steels by carbonitriding processes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

313-329

Citation:

Online since:

December 2015

Export:

Price:

[1] J. Slycke and T. Ericsson, A Study of Reactions Occurring During the Carbonitriding Process, Journal of Heat Treating, Vol. 2, No. 1, p.3–19, (1981).

DOI: 10.1007/bf02833069

Google Scholar

[2] Surface Hardening of Steel, ASM International, Materials Park, OH, (2002).

Google Scholar

[3] G. Rengstorff, M. Bever, and C. F. Floe, The Carbonitriding Process of Case Hardening Steel, Met. Prog., p.651, (1949).

Google Scholar

[4] R. Davies and C. G. Smith, A Practical Study of the Carbonitriding Process, Met. Prog., Vol. 114 (No. 4), p.40–53, (1978).

Google Scholar

[5] R. J. Talib, A. H. Hashim, M. A. Hamid and J. J. Mohamed, The Effect of Methane and Nitrogen Ratio on the Mechanical and Tribological Properties of Plasma Carbonitrided Stainless Steel, Journal of Engineering Science, Vol. 7, p.63–75, (2011).

Google Scholar

[6] C. Ohki, Atmospheric Control Method for JIS-SUJ2 Carbonitriding Processes, NTN Technical Review No. 74, (2006).

Google Scholar

[7] D. -J. Shen, Y. -L. Wang, P. Nash and G. -Z. Xing, A Novel Method of Surface Modification for Steel by Plasma Electrolysis Carbonitriding, Materials Science and Engineering A, Vol. 458, p.240–243, (2007).

DOI: 10.1016/j.msea.2006.12.067

Google Scholar

[8] O. J. Ibironke, A. Falaiye, T. V. Ojumu, , E. A. Odo and O. O. Adewoye, Case-depth Studies of Pack Cyaniding of Mild Steel Using Cassava Leaves, Materials and Manufacturing Processes, Vol. 19, No. 5, p.899–905, (2004).

DOI: 10.1081/amp-200030626

Google Scholar

[9] K. J. Akinluwade, A. R. Adetunji, M. O. Adeoye, L. E. Umoru, P. N. Kalu, A. T. Taiwo, and O. O. Adewoye, Development of an Environmentally Friendly In-situ Pack-Cyaniding Technique, Journal of Minerals & Materials Characterization & Engineering, Vol. 11, No. 1, pp.21-30, (2012).

DOI: 10.4236/jmmce.2012.111002

Google Scholar

[10] Y. Z. Shen, K. H. Oh, D. N. Lee, Nitriding of Steel in Potassium Nitrate Salt Bath, Scripta Materialia, Vol. 53, p.1345–1349, (2005).

DOI: 10.1016/j.scriptamat.2005.08.032

Google Scholar

[11] Y. Z. Shen, K. H. Oh, D. N. Lee, Nitrogen Strengthening of Interstitial-Free Steel by Nitriding in Potassium Nitrate Salt Bath, Materials Science and Engineering A, Vol. 434, p.314–318, (2006).

DOI: 10.1016/j.msea.2006.06.127

Google Scholar

[12] J. Crank, The Mathematics of Diffusion, Oxford University Press Inc., New York, USA, 2nd Edition, (1975).

Google Scholar

[13] E. E. Conn, Cyanogenic Glycosides: Their Occurrence, Biosynthesis, and Function, Journal of Agricultural and Food Chemistry, Vol. 17, Issue 3, pp.519-526, (1973).

Google Scholar

[14] K. Y. Li and Z. D. Xiang, Increasing Surface Hardness of Austenitic Stainless Steels by Pack Nitriding Process, Surface and Coating Technology, Vol. 204, No. 14, pp.2268-2272, (2010).

DOI: 10.1016/j.surfcoat.2009.12.022

Google Scholar

[15] H. Rosling, N. Mingi, T. Tyllesker and M. Banaa, Proceedings of the First International Scientific Meeting of the Cassava Biotechnology Network, CIAT, Cartegena de Indians Columbia, 25-28, p.368, (1992).

Google Scholar

[16] H. Jimenez, M. H. Staia and E. S. Puchi, Mathematical Modeling of a Carburizing Process of a SAE 8620H steel, Surface and Coatings Technology, Vol. 120-121, pp.358-365, (1999).

DOI: 10.1016/s0257-8972(99)00464-8

Google Scholar

[17] L. K. Reddy, D. Handley and P. Weston, Principles of Engineering Metallurgy, New Age International (P) Ltd., 2nd edition, p.132 (2007).

Google Scholar

[18] O. Karabelchtchikova and R. D. Sisson, Carbon Diffusion in Steels: A Numerical Analysis Based on Direct Integration of the Flux, Journal of Phase Equilibria and Diffusion, Vol. 27, No. 6, (2006).

DOI: 10.1361/154770306x153611

Google Scholar

[19] K. E. Blazek and P. R. Cost, Carbon Diffusivity in Iron-Chromium Alloys, Trans. Jpn. Inst. Met., Vol. 17, No. 10, pp.630-636, (1976).

DOI: 10.2320/matertrans1960.17.630

Google Scholar

[20] W. Batz , R. F. Mehl, Diffusion Coefficient of Carbon in Austenite, Trans. AIME, Vol. 188, pp.553-560, (1950).

DOI: 10.1007/bf03399032

Google Scholar

[21] H. K. D. H. Bhadeshia and R.W.K. Honeycombe, Steels—Micro-structure and Properties, Butterworth-Heinemann, Oxford, p.15–16, (2006).

Google Scholar

[22] J. R. G. da Silva and R. B. McLellan, Diffusion of carbon and nitrogen in B.C.C. iron, Mater. Sci. Eng., Vol. 26, p.83–87, (1976).

Google Scholar

[23] S. R. Hosseini, F. Ashrafizadeh and A. Kermanpur, Calculation and Experimentation of the Compound Layer Thickness in Gas and Plasma Nitriding of Iron, Iranian Journal of Science & Technology, Transaction B: Engineering, Vol. 34, No. B5, pp.553-566.

Google Scholar

[24] M. Keddam, Surface Modification of the Pure Iron by the Pulse Plasma Nitriding: Application of a kinetic model, Materials Science and Engineering A, Vol. 462, pp.169-173, (2007).

DOI: 10.1016/j.msea.2006.02.459

Google Scholar

[25] W. D. Callister, Materials Science and Engineering, John Wiley & Sons Inc., USA, (2007).

Google Scholar

[26] S. R. Elmi-Hosseini, Simulation of Case Depth of Cementation Steels According to Fick's Laws, Journal of Iron and Steel Research, International, Vol. 19, No. 11, pp.71-78, (2012).

DOI: 10.1016/s1006-706x(13)60023-0

Google Scholar

[27] M. F. Yan, Z. R. Liu and T. Bell, Effect of Rare Earths on Diffusion Coefficient and Transfer Coefficient of Carbon during Carburizing, Journal of Rare Earths, Vol. 19, No. 2, pp.122-124, (2001).

Google Scholar

[28] J. I. Goldstein and A. E. Moren, Diffusion Modeling of the Carburization Process, Metallurgical and Materials Transactions A, Vol. 9, No. 11, pp.1515-1525, (1978).

DOI: 10.1007/bf02661934

Google Scholar

[29] G. E. Totten and M. A. H. Howes, Steel Heat Treatment Handbook, New York, NY: Marcell Dekker, Inc., (1997).

Google Scholar