Benefeciation of Derived Bovine Bone Waste Hydroxyapatite Obtained from Meatballs Sellers and its Characterization

Article Preview

Abstract:

In this study, bovine bone waste obtained from meatballs sellers was utilized as novel alternative bioresource of hydroxyapatite (HA). The femur bovine bone waste in bulk form was initially deproteinized using HCl and NaOH and then followed by calcination at 500 °C and 800 °C for 5 h to obtained HA powder. The thermal stability of HA powder was monitored using simultaneous thermogravimetric analysis (TG) and differential thermal analysis (DTA). The TG/DTA result shows that the combustion of the organic component of bone, especially of collagen occured at temperature range of 174-550 °C. The phase content, type of bond present, and morphology of calcined HA powder were conducted using x-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) respectively. The crystallinity of the HA sample shows increase with increasing of the temperature calcination. The characteristic of bands of HA and additionally peaks of carbonate ions were observed in the FTIR results and the morphologic characteristics of the HA particles shows the material is a homogeneous powder.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-159

Citation:

Online since:

August 2015

Authors:

Export:

Price:

* - Corresponding Author

[1] L.L. Hench, Bioceramics, J. Am. Ceram. Soc. 81(7) (1998), 1705-1728.

Google Scholar

[2] Y. Tanaka, Y. Hirata, and R. Yoshinaka, Synthesis and characteristics of ultrafine hydroxyapatite particles. J. Ceram. Process. Res. 4 (2003), 197-201.

Google Scholar

[3] S. Pramanik, A.K. Agarwal, K.N. Rai and A. Garg, Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int. 33(3) (2007), 419–426.

DOI: 10.1016/j.ceramint.2005.10.025

Google Scholar

[4] S. Pramanik and K.K. Kar, Nanohydroxyapatite synthesized from calcium oxide and its characterization. Int. J. Adv. Manuf. Technol. 66(5-8) (2013), 1181-1189.

DOI: 10.1007/s00170-012-4401-z

Google Scholar

[5] W. Suchanek and M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 3(1) (1998), 94-117.

DOI: 10.1557/jmr.1998.0015

Google Scholar

[6] P. Layrolle, P. Ito, and T. Tateishi, Sol-gel synthesis of amorphous calcium phosphate and sintering into hydroxyapatite bioceramics, J. Am. Ceram. Soc. 81 (1998), 1421-1428.

DOI: 10.1111/j.1151-2916.1998.tb02499.x

Google Scholar

[7] D.M. Liu, T. Trosczynski and W.J. Tseng, Aging effect on the phase evolution of water-based sol-gel hydroxyapatite. Biomater. 23(4) (2002), 1227-1236.

DOI: 10.1016/s0142-9612(01)00242-3

Google Scholar

[8] M. Hsieh, Li-H. Perng, T. S Chin and H.G. Perng, Phase purity of sol-gel derived hydroxyapatite ceramic. Biomater. 22(9) (2001), 2601-2607.

DOI: 10.1016/s0142-9612(00)00448-8

Google Scholar

[9] E. Rivera-Muñoz, R. Curiel, and R. Rodríguez, Selectivity in the hydroxyapatite synthesis from eggshell using different thermal treatments, Mater. Res. Innov. 7 (2) (2003), 85-90.

DOI: 10.1080/14328917.2003.11784767

Google Scholar

[10] K. P Sanosh, M.C. Chu, A. Balakrishnan, T.N. Kim and S.J. Cho, Utilization of biowaste eggshells to synthesize nanocrystalline hydroxyapatite powders. Mater. Lett. 63 (2009), 2100-2102.

DOI: 10.1016/j.matlet.2009.06.062

Google Scholar

[11] K.S. Vecchio, X. Zhang, J.B. Massie, M. Wang and C.W. Kim, Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants, Act. Biomater. 3(6) (2007), 910–918.

DOI: 10.1016/j.actbio.2007.06.003

Google Scholar

[12] C.Y. Ooi, M. Hamdi and S. Ramesh, Properties of hydroxyapatite produced by annealing of bovine bone, Ceram. Inter. 33(7) (2007), 1171–1177.

DOI: 10.1016/j.ceramint.2006.04.001

Google Scholar

[13] M.M. Bahrololoom, M. Javidi, S. Javadpour and J. Ma, Characterization of natural hydroxyapatite extracted from bovine cortical bone ash, J. Ceram. Proc. Res. 10(2) (2009), 129-138.

Google Scholar

[14] S. Pramanik, A.S.M. Hanif, B. Pinguan-Murphy and N.A.A. Osman, Morphological change of heat treated bovine bone: A comparative study. Mater. 6(1) (2013), 65-75.

DOI: 10.3390/ma6010065

Google Scholar

[15] S. Mondal, B. Mondal, A. Dey and S. S. Mukhopadhyay, Studies on processing and characterization of hydroxyapatite biomaterials from different bio wastes, J. Miner. & Mater. Charac. & Eng. 11(1) (2012), 55-67.

DOI: 10.4236/jmmce.2012.111005

Google Scholar

[16] K. Haberko, M.M. Bucko, J. Brzezinska-Miecznik, M. Haberko, W. Mozgawa, T. Panz, A. Pyda, and J. Zarebski, Natural hydroxyapatite: its behaviour during heat treatment. J. Euro. Ceram. Soci. 26(4-5) (2006), 537-542.

DOI: 10.1016/j.jeurceramsoc.2005.07.033

Google Scholar

[17] S.E. Etok, E. Valsami-Jones, T.J. Wess, J.C. Hiller, C.A. Maxwell, K.D. Rogers, D.A.C. Manning, M.L. White, E. Lopez-Capel, M.J. Collins, M. Buckley, K.E.H. Penkman and S.L. Woodgate, Structural and chemical changes of thermally treated bone apatite, J. Mater. Sci. 42(23) (2007).

DOI: 10.1007/s10853-007-1993-z

Google Scholar

[18] M.M. Figueiredo, J.A.F. Gamelas and A.G. Martins. Characterization of Bone and Bone Based Graft Materials Using FTIR Spectroscopy, in: T. Theophile (Ed), Infrared Spectroscopy-Life and Biomedical Science, In Tech. Europe. Croatia., 2012, 315-338.

DOI: 10.5772/36379

Google Scholar

[19] E. Landi, G. Celotti, G. Logroscino and A. Tampieri, Carbonated hydroxyapatite as bone substitute, J. Eur. Ceram. Soc. 25(15) (2003), 2931-2937.

DOI: 10.1016/s0955-2219(03)00304-2

Google Scholar