Thermodynamic Analysis of the Effects of Alloying Elements on the Stacking Fault Energy in Ruthenium-Bearing Nickel Alloys

Article Preview

Abstract:

The effects of Al, Co, Re, and Ru on the stacking fault energy in Ni alloys were analyzed using computational thermodynamics. The effects of adding up to 5 at% Re or Ru to a Ni-15at%Co system were found to be weak at 300 °C, 700 °C, and 900 °C. However, Al addition decreased the stacking fault energy in a Ni-15at%Co-Xat%Ru system, where X = 0, 3, 5. In addition, this decrease in the stacking fault energy due to Al addition became more significant as the amount of Ru increased. Furthermore, in Ni–Co–Al–Ru alloys containing 9at%Al, the addition of 5at%Ru decreased the stacking fault energy as much as the addition of 12.5at%Co at 900 °C. The effects of Co and Ru addition on the γ/γ’ microstructure of Ni-based superalloys were also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

580-584

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] S. Walston, A. Cetel, R. MacKay, K. O'Hara, D. Duhl, R. Dreshfield, in: Superalloys 2004, edited by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston, TMS, PA, (2004), p.15.

DOI: 10.7449/2004/superalloys_2004_15_24

Google Scholar

[2] T. Kitashima, T. Yokokawa, A.C. Yeh, H. Harada: Intermetallics, Vol. 16 (2008), p.779.

Google Scholar

[3] A. Heckl, S. Neumeier, M. Goken, R.F. Singer: Mat. Sci. Eng. A, Vol. 528, (2011), p.3435.

Google Scholar

[4] R.A. Hobbs, L. Zhang, C.M.F. Rae, S. Tin: Mat. Sci. Eng. A, Vol. 489, (2008), p.65.

Google Scholar

[5] S. Ma, L. Carroll, T.M. Pollock: Acta Meter., Vol. 55 (2007), p.5802.

Google Scholar

[6] H. Murakami, T. Yamagata, H. Harada, M. Yamazaki: Mat. Sci. Eng. A, Vol. 223, (1997), p.54.

Google Scholar

[7] C.M.F. Rae, K. Kakehi, R.C. Reed, in: Materials for Advanced Power Engineering 2002, edited by J. Lecomte-Beckers, M. Carton, F. Schubert and P.J. Ennis, Forschungszentrum Julich GmbH, Germany, (2002), p.207.

Google Scholar

[8] F. Piettinari, J. Douin, G. Saada, P. Caron, A. Coujou, N. Clement: Mat. Sci. Eng. A, Vol. 325 (2002), p.511.

Google Scholar

[9] P.J. Ferreira, P. Mullner: Acta Meter., Vol. 46 (1998), p.4479.

Google Scholar

[10] A.P. Midownik: Calphad, Vol. 2 (1978), p.207.

Google Scholar

[11] T. Wang, L.Q. Chen, Z.K. Liu: Met. Trans. A, Vol. 38 (2007), p.562.

Google Scholar

[12] A.T. Dinsdale: Calphad, Vol. 15 (1991), p.317.

Google Scholar

[13] I. Ansara, N. Dupin, H.L. Lukas, B. Sundman: J. Alloys Comp., Vol. 247 (1997), p.20.

Google Scholar

[14] S.N. Prins, L.A. Cornish, W.E. Stumpf, B. Sundman: Calphad, Vol. 27 (2003), p.79.

Google Scholar

[15] S. Hallstrom, D. Andersson, A. Ruban, J. Agren: Acta Meter., Vol. 56 (2008), p.4062.

Google Scholar

[16] X.J. Liu, J.Y. Lin, Y. Lu, Y.H. Guo, C.P. Wang: Calphad, Vol. 45 (2014), p.138.

Google Scholar

[17] C.B. Carter, S.M. Holmes: Philos. Mag., Vol. 35 (1977), p.1161.

Google Scholar

[18] P.C.J. Gallagher: Met. Trans., Vol. 1 (1970), p.2429.

Google Scholar

[19] T. Ericsson: Acta Metall., Vol. 14 (1966), p.853.

Google Scholar

[20] T. Yokokawa, M. Osawa, K. Nishida, T. Kobayashi, Y. Koizumi, H. Harada: Scripta Meter., Vol. 49 (2003), p.1041.

Google Scholar